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G R A P H I C A L A B S T R A C T
� Sum of ranking differences (SRD)
used for tuning parameter selection
based on fusion of multicriteria.

� No weighting scheme is needed for
the multicriteria.

� SRD allows automatic selection of
onemodel or a collection ofmodels if
so desired.

� SRD allows simultaneous compari-
son of different calibration methods
with tuning parameter selection.

� New MATLAB programs are de-
scribed and made available.
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A B S T R A C T

Most multivariate calibration methods require selection of tuning parameters, such as partial least
squares (PLS) or the Tikhonov regularization variant ridge regression (RR). Tuning parameter values
determine the direction and magnitude of respective model vectors thereby setting the resultant
predication abilities of the model vectors. Simultaneously, tuning parameter values establish the
corresponding bias/variance and the underlying selectivity/sensitivity tradeoffs. Selection of the final
tuning parameter is often accomplished through some form of cross-validation and the resultant root
mean square error of cross-validation (RMSECV) values are evaluated. However, selection of a “good”
tuning parameter with this onemodel evaluationmerit is almost impossible. Including additional model
merits assists tuning parameter selection to provide better balanced models as well as allowing for a
reasonable comparison between calibration methods. Using multiple merits requires decisions to be
made on how to combine and weight the merits into an information criterion. An abundance of options
are possible. Presented in this paper is the sum of ranking differences (SRD) to ensemble a collection of
model evaluationmerits varying across tuning parameters. It is shown that the SRD consensus ranking of
model tuning parameters allows automatic selection of the final model, or a collection of models if so
desired. Essentially, the user’s preference for the degree of balance between bias and variance ultimately
decides the merits used in SRD and hence, the tuning parameter values ranked lowest by SRD for
automatic selection. The SRD process is also shown to allow simultaneous comparison of different
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calibrationmethods for a particular data set in conjunctionwith tuning parameter selection. Because SRD
evaluates consistency across multiple merits, decisions on how to combine and weight merits are
avoided. To demonstrate the utility of SRD, a near infrared spectral data set and a quantitative structure
activity relationship (QSAR) data set are evaluated using PLS and RR.

ã 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multivariate calibration for quantitative purposes is becoming
ever more important in diverse fields such as on-line process
monitoring for product yield and quality, medical diagnostics, the
pharmaceutical industry, and agriculture and environmental
monitoring just to name a few.Many of themultivariate calibration
processes, such as partial least squares (PLS) or the Tikhonov
regularization (TR) variant known as ridge regression (RR) require
selection of appropriate respective tuning parameter (meta-
parameter) values [1–3]. Specifically, a model vector must be
selected from a set of tuned models developed by a particular
calibration method. The number of model vectors generated
depends on the number of tuning parameter values for the
respective method. For PLS, the number of potential models is the
number of latent variables (LVs) determined by the data pseudo-
rank. The number of ridge parameters (number of RR models), is
essentially unlimited since the ridge parameter is continuously
varied.

Using one of several cross-validation (CV) processes [4–8], the
finalmodel vector (tuning parameter) is typically chosen to predict
with “acceptable” accuracy (low bias) based on the one model
merit rootmean square error of CV (RMSECV) [1,2]. However, when
RMSECV values are plotted against the tuning parameter value, the
plot can resemble a RMSE of calibration (RMSEC) plot and thus,
choosing a tuning parameter value on this one model merit is then
not obvious [9]. One of the data sets evaluated in this paper has
such a difficulty. Other single model merits have been developed
and compared for model selection [10–19].

A primary consideration in choosing a suitable tuning
parameter value is obtaining a model not under- or over-fitted
(good predictability in conjunction with proper model complexity
also known as the bias/variance tradeoff). In this case, bias is the
degree of prediction accuracy obtained from a model and variance
is related to the extent of uncertainty in the prediction [20–23].
Methods such as RR and PLS are biased methods and hence a
tradeoff in the degree of under- and over-fitting is mandatory
to form a model with an “acceptable” bias/variance balance
[3,21–23]. Models with acceptable bias/variance tradeoffs were
recently shown to also balance the intrinsic model selectivity and
sensitivity [23]. Selectivity is a measure of the level of unique
analyte information in measurements, e.g., spectra, and is often
identified with the net analyte signal (NAS) [13]. Sensitivity refers
to the degree of change in signal relative to a change in the quantity
of analyte, e.g., in analytical chemistry, a system is sensitive if a
small change in analyte concentration generates a large change in
signal [13,17]. It follows then that at least two model merits, each
trending in opposite directions, should be simultaneously evalu-
ated in order to characterize the balance between under- and over-
fitting [20,21,24–28].

Different tactics have been used to combine two model merits.
One is a graphical approach forming L-curves by plotting RMSEC
(or RMSECV) against amodel complexity or variancemeasurewith
the better models residing in the corner region of the resultant L
shaped curve [3,20,21,24–26,29]. The RMSEC (or RMSECV) values
have been scaled and combined with scaled model complexity
values or variance measures to convert L-curves to U-curves
allowing automatic model selection [20,28]. Different
combinations of RMSEC with RMSECV values have been plotted
against model complexity or variance measures to form other
U-curves [23]. Variations are possible by combining respective R2

values slopes, or intercepts from plotting model predicted values
against reference values.While thesemost recent approaches have
expanded the number of model merits simultaneously evaluated,
there are many more model merits that can participate in the
tuning parameter selection process [13–19]. The difficult part in
using a collection ofmodelmerits is how to actually combine them.
Multicriteria desirability functions are possible but these require
tuning in themselves [30]. Recent work developed a two-step
sequential process to first select the number of latent variables for
each data preprocessing method, and then from these, select the
best preprocessing method [31]. Several model merits have been
used in a consensus approach, but again, empirical data set
dependent merit threshold values were needed [32]. Essentially,
the user’s preference for the degree of balance between bias and
variance ultimately decides the merits used (and potential
weights) in any multicriteria process and hence, the tuning
parameter values deemed best.

This paper shows that the sum of ranking differences (SRD)
[33–37] is a simple objective process to ensemble multiple model
merits for rankingmodels (tuning parameters) allowing automatic
selection of a consensusmodel or set ofmodels.When CV is used to
generate model merits, then SRD allows the models merits
computed on each data split to be evaluated, not just the mean
values as in the standard CV process to select a tuning parameter.
Because SRD evaluates consistency across multiple merits,
decisions on how to combine and weight merits are avoided. If
desired for a specific data set, the flexibly of the SRD process allows
concurrent comparisons of modeling methods in combination
with tuning parameter selection. Only a few of the possible model
merit combinations with SRD are studied in this paper and only
model vectors estimated by PLS and RR are compared. As noted
above for any tuning parameter selection processes, it is further
verified in this paper that the user’s preference and choice ofmodel
merit(s) used can affect the tuning parameter value selected.

The current versions of SRD are in Excel [38] and have data size
limitations due to constraints imposed by Excel and other
restrictions on the input SRD matrix exist. Developed for this
paper is MATLAB code removing these restrictions [39]. The new
algorithm attributes are described in the section overviewing SRD.
Before overviewing SRD, the calibration methods and model
merits used are briefly described.

2. Calibration processes

The multivariate calibration model for this paper is expressed
by

y ¼ Xbþ e (1)

where y specifies the m�1 vector of quantitative values of the
propertytobepredicted formcalibrationsamples,X symbolizes the
m�p calibration matrix of p predictor variables, and b represents
the p�1 vector of calibration model coefficients to be estimated.
The m�1 vector e denotes normally distributed errors with mean
zero and covariance matrix s2I. The relationship in Eq. (1) is
common tomanydisciplines.However, thepredictionpropertyand
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predictor variables are quite varied across respective disciplines. A
frequent situation in spectroscopic analysis is where y contains
analyte concentrations and the measured p variables are wave-
lengths. Usuallym�pwith spectroscopic data andhence,methods
such as PLS or RR are needed. If m�p, then multiple linear
regression (MLR) can alsobeused. There aremanyothermethodsof
modeling processes, but only PLS and RR are evaluated here.

Extensive explanations of PLS and RR are available [1–3] and
only key minimization expressions are shown emphasizing
respective tuning parameters. Tuning parameter values establish
the bias/variance tradeoff and the corresponding model selectivi-
ty/sensitivity balance [23]. For least squares, there is no tradeoff
(unless variable selection is involved) and the minimization is

expressed as determining ab ðb̂Þ such that minðk y� Xb k2Þ is
satisfied where the double brackets k � k indicate the L2 norm
(vector 2-norm or Euclidian norm) that defines the model vector
magnitude. The methods of PLS and RR minimize related
expressions.

2.1. PLS

The PLS approach to regression can be expressed as the

minimization of ðk y� Xb k2Þ subject to the constraint b 2
Kd XTX;XTy
� �

where Kd XTX;XTy
� �

¼ span XTy;XTXXTy; . . . ;
�

XTX
� �d�1

XTyÞ is the span of the Krylov subspace based on d PLS

basis vectors (latent variables (LVs)) and the superscript T indicates
the matrix algebra transpose operation. In the process of forming
the model vector, it has been shown that the magnitude of the

estimated model vector, expressed as k b̂ k, increases as more PLS
LVs are used, i.e., the model complexity or effective rank increases
[40–42]. Another measure recently studied to characterize model
complexity is the jaggedness of the model vector [28] defined by

Ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
j¼2

b̂ij � b̂ij�1

� �2vuut (2)

Jaggedness is also computed for the ith model in this paper. The
number of PLS LVs is the tuning parameter that regulates themodel
vector direction and size and the underlying tradeoffs.

2.2. RR

Theminimization expression for the TR variant RR [24,43–45] is
min k y� Xb k2 þh2 k b k2� �

where h symbolizes the regulariza-
tion tuning parameter controlling the penalty given to the second
term and is in the range 0 � h < 1. The value of h regulates the
model vector direction and size of the corresponding estimated

model vector. The greater the value, the smaller k b̂ k is. Other
modifications of TR have been recently reviewed [45].

3. Model prediction and model evaluation (selection) merits

With an estimate of b (b̂), the amount of the calibrated property
present in a new measured p�1 sample vector x is predicted by

ŷ ¼ xT b̂. Thus, the degree of accuracy of the predicted value
depends on the magnitude and direction of the estimated model
vector which are determined by the tuning parameter. Because
actual reference values of new samples are not known, model
merits relative to the calibration samples are evaluated as proxies
to assist in selecting respective model tuning parameters to
hopefully ensure acceptable predictions of new samples.
The L-curve for selecting tuning parameters [3,20,21,24–27,29]
can be formed byplottingmean RMSEC or RMSECV against amodel
variance or complexitymeasure.Models in the corner region of the
L-curve represent acceptable compromises for the bias/variance
tradeoff, i.e., least risk of over- and under-fitting. These models
have been found to correspond to the underlyingmodel selectivity/
sensitivity balance. Studied in this paper is using SRD to rank
models based on model tradeoffs characterized by the CV split-

wise values of RMSEC, RMSECV, k b̂ k, J, and others.
As noted in Section 1, approaches have been developed to

remove the potential ambiguity in determining the corner region
of an L-curve by forming U-curves with the best tuning parameter
value at the minimum allowing automatic tuning parameter
selection [20,23,28]. Two specific merits to be evaluated with SRD
in this study are

C1i ¼
k b̂i k �k b̂ kmin

k b̂ kmax � k b̂ kmin

 !
þ RMSECi � RMSECmin

RMSECmax � RMSECmin

� �
(3)

and

C2i ¼
RMSECi þ RMSECVi

RMSECi=RMSECVi
(4)

where values in C1 for the ith model are range scaled from 0 to 1.
The RMSECV values can be substituted for RMSEC in C1 as can J be

substituted for k b̂ k. Unless noted otherwise, C1 expressed by
Eq. (3) is used with SRD. The goal with C2 is to minimize the
numerator andmaximize the denominator to favor the CVmerit. In
this way, the calibration and validation samples are predicted
similarly with a bias toward predicting validation samples with a
smaller error. Respective R2 values obtained by plotting predicted
calibration values (ŷcal) or the CV predicted sample values such as

1� R2
cal

� �
þ 1� R2

cv

� �h i
= RMSEC=RMSECVð Þ are possible. Unless

noted otherwise, C2 is used with SRD as written in Eq. (4).
Various other merits have been proposed and evaluated to

select model tuning parameters when the merit values are used
univariately. For example, Mallow’s Cp criterion [46], generalized
CV (GCV) [47], AIC [48], BIC [49], trace (XTX)+ [21], and others
[12,18,19]. These merits were not used in this paper, but their
usages with SRD are also feasible. Instead, SRD rankings are
reported using the CV split-wise combinations of RMSEC, RMSECV,

respective R2, slopes, and intercepts, k b̂ k, J, C1, and C2. For
comparison, SRD rankings are presented from just using the
RMSECV model merit. The mean L- and U-curves are also plotted
for comparison to SRD rankings.
4. SRD

The SRD algorithm is a simple, powerful, general process to
determine similarities between variables by ranking the variables
(columns of the SRD input matrix) across objects (rows of the SRD
input matrix) relative to respective object reference (target)
ranking values [33–37]. The method is well described in the
literature and hence, only briefly outlined here. First a brief
statement is given on using SRD for tuning parameter selection.
This statement is followed by a brief but detailed description of the
general SRD process. This section concludes with further details on
how SRD will be used for tuning parameter selection.

As a simple example of SRD being used for tuning parameter
selection, a CV process can be used to produce the number of rows
(n) of the SRD inputmatrix with RMSECV values enumerated in the
rows and variables (columns) are, in the case of PLS, number of LVs.



ig. 1. Corn data images of (a) PLS and (b) RR CV split-wise RMSECV values for the
00 LMOCVs and respective tuning parameters. Ridge values range from 68 at ridge
arameter 1 to 6.7�10�7 at ridge parameter 150.
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Similarly, RR ridge parameters can be placed as column headings
for the input matrix and the rows are the particular CV splits.

With SRD, target reference values are required for the each
object and these can be theminimum,maximum,median, ormean
of respective rows or known reference values can be used. For each
row (object) of the input SRD matrix, the value closest to the
corresponding row target is identified. A target vector is created
with these values sorted (ranked) from low to high and the
respective row indexes are noted. The SRD input matrix is
rearranged to this target row index sort and all values in each
respective column (variable) are ranked from low to high. The
absolute value of the difference between the target row ranking
and each column ranking of the reordered rows is computed and
summed for each column to form the column-wise vector of the
final SRD ranked columns. The closer an SRD value is to zero, the
closer the ranking of that column (variable) to the row (object)
targets, and the better the variable is for that particular SRD
evaluation. The proximity of SRD rank values shows which
variables are similar. Groupings of variables can also be observed.
The SRD rankings can also be considered dissimilarity assessments
with the greater the SRD rank value, the more dissimilar the
variable is to the object targets. Recently, SRD has been related to
the inversion number [50] and SRD has been advanced to handle
observations with ties [37].

A process has been established to validate the SRD ranking
results. The validation involves determining if the SRD rankings are
no different than random rankings [34]. The process is named the
comparison of ranks by random numbers (CRRN). For CRRN,
distributions are generated for random numbers and are used to
evaluate how far the SRD ranked values are from being ranked
randomly. Randomnumbers are used for a small number of objects
(less than 13, or 9 if ties are present) and the normal distribution is
used as the approximate for a large number of objects (13 or
greater). The CRRN process is not the validation focus in this paper
and the reader is referred to Ref. [34] for the details of CRRN.

Instead of CRRN, and as originally developed and available in
the Excel SRD version [38], a CV process of the input SRD matrix
can also be used with the SRD algorithm to further validate results.
With the Excel version a 7-fold CV is used on the SRD input matrix
to estimate uncertainties in the SRD rankings of the variables. In
this situation, one-seventh of the objects are left out and the SRD
algorithm is run on the remaining six-seventh of the objects to
obtain the SRD rank values. The process is repeated seven times
and the variation of the SRD rankings across the folds can be
evaluated by assigning uncertainties to the individual SRD ranks
and by using a boxplot to visualize. With the CV of the SRD input
matrix, theWilcoxonmatched pair or sign tests [51] can be used to
provide statistical significance between SRD rankings. While both
validation process are evaluated in this paper, graphical results are
primarily presented using CV on the SRD inputmatrix, i.e., boxplots
are mostly shown.

Typically, object measures (model merits for this paper) being
used in the SRD input matrix are not measured on the same scale.
For SRD to function correctly, SRD input values must be scaled to
have similar magnitudes. Numerous scaling approaches are
possible such as range scaling inclusively between 0 and 1,
autoscaling (or standardization) to mean 0 and standard deviation
1, and others [36,52]. Normalizing each row (vector) of the SRD
input matrix to unit length is used in this study.

The SRD process has been useful in a large number of varied
situations [35,36 and references therein]. For example, in one
study, SRD was used to compare the rankings of two different
methods for rapidly screening the comprehensive two-dimen-
sional liquid chromatographic analysis of wine [53]. Different
data sets were used for the comparison. In other recent studies,
SRD was used to compare rankings of sensory models relative to
panel scores [54,55], different curve resolution and classification
methods were compared using a variety of performance merits
[56,57]. Lastly, among the diverse applications, SRD has been used
to compare several modeling methods to compare and form
quantitative structure activity relationship (QSAR) models
[34,58].

Other recent works investigating processes to combine
rankings of variables based on a set of measured objects have
recently been published [59,60]. In these studies, the focus is
rankingmolecules in a data base to a user defined target reference
structure. The rankings are based on multiple intermolecular
structural similarity measures. Specifically, a matrix of similarity
values is formed where the columns (variables) are the molecules
and rows (objects) are the similarity measures. For each row
similarity measure, the columns are numerically ranked from 1 to
the number of columns relative to the magnitude of that
particular similarity measure. A rank of 1 is for the column
molecule most similar to the target reference structure. The ranks
in each column are summed and the columns are sorted to the
respective rank sums. The lower the rank sum, the more similar
the column molecule is to the sought reference structure. Other
combinations of the ranked matrix besides the sumwere studied.
The method is applicable to tuning parameter selection and other
areas where a subset variables need to be selected from a
collection of variables. This approach can be considered
unsupervised while the SRD process is supervised (a target
vector is used). The SRD approach could also be used with
molecular matching studies.

4.1. New SRD features with the MATLAB code

At the time of this writing, there are Excel versions to perform
SRD with CRRN, SRD with 7-fold CV, and SRD to handle ties. In all
cases, the number of objects for the SRD input matrix has been
tested to 1400 and the number of possible variables is 250. These

[(Fig._1)TD$FIG]
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Excel versions with sample input and output files are available for
downloading [38]. The Excel versions require the same target
values for each object.

For this work, MATLAB codewas developed towork in the same
format as the Excel versions as well as additional formats, albeit
there is no MATLAB version of the Excel SRD developed for ties
[33]. With MATLAB, the only limitation to the size of the SRD input
matrix is the memory available on the computer performing the
SRD computations. TheMATLAB code including a demo is available
for downloading [39].

The MATLAB code allows for multiple blocks of model merits.
For example, an SRD input matrix can be composed of a block of
RMSECV rows with each row being the corresponding CV split of
RMSECV values and another block of rows with the corresponding
CV split-wise model R2 values. The target reference values for the
RMSECV blockwould be rowminima and target reference values of
row maxima for the R2 block. Regardless, all values in model merit
[(Fig._2)TD$FIG]

Fig. 2. Mean corn model merit graphics for PLS plotting (a) RMESCV against LVs and (
respectively. For both (b) and (c), RMSECV (blue triangles), RMSEC (red circles), C1 (gree
squares). Values plotted in (b) and (c) are scaled to fit in the plots. Numbers in PLS plots co
graphics for (d) RMESCV against ridge parameters, (e)merits plotted against themodel L2
parameter number. Ridge values range from 68 at ridge parameter 1 to 6.7�10�7 at ri
respectively, in (e), and (f). (For interpretation of the references to color in this figure
blocks need to be scaled to similar magnitudes (or rank
transformed) prior to analysis by SRD. The MATLAB code is
flexible to allow SRD computations based on single object rows
(considered one block and the only block for the SRD input matrix)
or blocks of separate objects with equal or unequal number of rows
in each block.

For validation of the SRD rankings, a similar CRRN process
applied in the Excel versions is used in the MATLAB code. For CV of
the SRD input matrix, the MATLAB code allows the option of using
n-fold CV or leave multiple out CV (LMOCV) processes to obtain a
boxplot as previously described [34] for the Excel SRD version.
With n-fold CV, the user specifies a value for n and this value is used
for each block of model merit CV values in the SRD input matrix.
For LMOCV, the user specifies the percent to be randomly left out of
each model merit block of CV values and how many times each
block is to be split. As noted in Section 4, if the SRD input matrix is
based on only single object rows, then the SRD input matrix is
b) and (c) are model merit values plotted against the model L2 norm and J values,
n diamonds), C1 with J replacing the L2 norm (cyan stars), and C2 inverted (brown
rrespond to number of LVs. Also shown are the correspondingmean RRmodel merit
normvalues and (f), against the J values. Numbers in the RR plots correspond to ridge
dge parameter 150 in (d) and the same range trends are shown from left to right,
legend, the reader is referred to the web version of this article.)
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considered one block for the SRD CV purpose to obtain the boxplot.
In this case, all SRD input values in each rowneed to transformed to
one common target value such as minimization.

4.2. SRD setup for tuning parameter selection and comparisons of
modeling methods

The SRD input matrix is objects by variables and it is best to
have at least seven rows to avoid a random ranking of the variables.
In order to build up the number of rows, a CV process is used in this
study. For example, if the goal is to select the number of PLS LVs
using n-fold CV to form RMSECV values, the SRD input matrix
would then be n by number of PLS LVs. Each row of this SRD input
matrix would contain the corresponding RMSECV fold values for
that particular split at the respective LVs. The input reference
target RMSECV values for the SRD algorithm would be the row
minima. The SRD algorithm uses this input matrix to rank the PLS
LVs (models) relative to meeting target minima and presents
model rankings providing the user with an automatic process to
select the most consistent model(s). The closer a LV SRD value is to
zero, the closer the ranking is to reference minima values. The PLS
models (LVs) with similar SRD values are models predicting
similarly. As noted, SRD values can also be considered as a
dissimilarity measure and the greater the value, the more
dissimilar to the reference minima values. To validate SRD results,
the CRNN and CV processes described in Section 4 can be used (in
this example situation, CV of the PLS RMSECV rows in the SRD
input matrix).

The rows of this example SRD PLS RMSECV input matrix can be
augmentedwith a second block of the corresponding CV split-wise

k b̂ k values. The target reference values for this block would be
row minima. Additional model merits can be augmented as other
blocks. A similar tuning parameter selection process can be used to
rank and select a RR model or a pool of models as well as ranking
and selecting other tuning parameter dependent modeling
[(Fig._3)TD$FIG]

Fig. 3. Corn data SRD boxplots using 7-fold CV on the (a) PLS 100 LMOCV RMSECV block
blocks, and (d) respective RR RMSECV and L2 norm blocks.
methods. Regardless, the SRD process ranks the tuning parameters
relative to the consistency of meeting the respective target values
across the merits being assessed. Ultimately, the final tuning
parameter rankings are affected by what type of model merits the
user has selected to use for rows in the SRD input matrix. To
simultaneously compare modeling methods in conjunction with
tuning parameter selection for a particular data set, the SRD input
matrix is column-wise augmented with the corresponding model
tuning parameters.
5. Experimental

5.1. Algorithms

MATLAB 8.1 (The Math Works, Natick, MA) algorithms for RR,
PLS, CV, SRD, and allmodelmerits werewritten by the authors. The
SRD Excel versions are downloadable [38] as is theMATLAB version
[39]. In all cases, the SRD inputmatrix was row-wise normalized to
unit length.

5.2. Cross-validation to form PLS and RR models

In order to assess model tradeoffs within a modeling process as
well as between modeling methods, the LMOCV format was used.
For each data set, 100 splits were used and on each split, a random
60% of the samples went to form the calibration set and the
remaining 40% were used for validation. On each split, values for
model merits such as vector L2 norm, J, RMSECV, etc. were
computed for each tuning parameter value. Themaximumnumber
of PLS LVs was determined by the respective data sets mathemati-
cal ranks (min(m,p)). The number of RR tuning parameters and
actual values differ per data set and are specified in the following
data set descriptions. On each CV split, all samples were column-
wise mean-centered to the calibration set before forming
respective models and predictions.
in Fig. 1a, (b) respective RMSECV RR block in Fig. 1b, (c) PLS RMSECV and L2 norm
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Fig. 5. Corn data SRD boxplots using model calibration merits RMSEC, C1, J, and L2
norm for (a) PLS and (b) RR.

[(Fig._4)TD$FIG]

Fig. 4. Corn data SRD boxplots from combing the PLS and RR RMSECV and L2 norm
values into one SRD.
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5.3. SRD validation

The SRD CRRN results were inspected to ensure models of
interest were not randomly ranked. A graphical example is
presented for the corn data. In this case, the SRD input matrix is
composed of mean merit values across the 100 LMOCV as single
rows. Otherwise, graphical results displayed are boxplots from
using SRD in the 7-fold CV mode for each block of model merits.

5.4. NIR corn data

Eighty samples of cornweremeasured from 1100 to 2498nm at
2nm intervals for 700 wavelengths on three near infrared (NIR)
spectrometers designatedm5,mp5 andmp6 [61]. Reference values
are provided for oil, protein, starch and moisture content.
Presented are the protein results using m5. The h RR tuning
parameter values exponentially decrease from 68 to 6.7�10�7 for
150 values.

5.5. Quantitative structure activity relationship (QSAR) data

The QSAR data consist of 142 compounds with 63 molecular
descriptors [62]. The compoundswere assayed for inhibition of the
three carbonic anhydrase (CA) isozymes CA I, CA II, and CA IV.
Carbonic anhydrase contributes to production of eye humor which
with excess secretion, causes permanent damage and diseases
(macular edema and open-angle glaucoma). Results are presented
for CA I. The h RR tuning parameter values exponentially decrease
from 11,383 to 1.2�10�4 for 80 values.

6. Results and discussion

6.1. Corn

Shown in Fig. 1 are images of the PLS and RR CV split-wise
RMSECV results for the 100 LMOCVs. Plotted in Fig. 2 are the mean
PLS and RR RMESCV plots against the respective tuning parameters
as well as PLS and RR graphics plotting mean RMSECV and RMSEC
values against the mean model L2 norm and J values. Also plotted
are C1 and C2 (where C2 has been inverted for maximization). The
images in Fig. 1 show the discrete nature of PLS versus the
continuous aspect of RR. This difference is further exemplified in
the corresponding plots shown in Fig. 2. From the expanded mean
RMSECV plots in Fig. 2a and d, it is observed that empirically
selecting appropriate tuning parameter values is not obvious.
Fig. 2b for PLS shows that by plotting the mean RMSECV or RMSEC
values against themodel complexitymeasure L2 norm, the tradeoff
becomes discernible in the corner regions of the L-curves assisting
in selecting the number of LVs. Note that in Fig. 2b, the models are
no longer equally spaced across the x-axis compared to Fig. 2a.
While models in the corner regions are those balancing the
tradeoff, the plots of C1 and C2 allow automatic selection with
9 LVs chosen using C1 and 11 LVs from the C2. These two models
are in the corner regions of the L-curves. Using J values (jaggedness
or roughness) of themodel vectors instead of the L2 norms does not
provide any additional insight in the graphics other than the early
LVmodels change little in jaggednesswhile the othermodelmerits
are adjusting. A similar discussion can be formed for Fig. 2d–f.
From the mean C1 and C2 plots, ridge parameters 60 (h =1.0�10
�2) and 65 (h=4.8�10�3) are chosen.

While mean C1 and C2 values are useful in selecting a tuning
parameter for PLS and RR, these composite merits are limited in
the number of specific model merits evaluated and the individual
CV values are not assessed. Using SRD can alleviate these
restrictions. Evaluated first are the SRD 7-fold CV results using
the split-wise PLS and RR RMSECV matrices imaged in Fig. 1 as the
SRD input matrix. These results are presented as boxplots in Fig. 3a
and b. It is not surprising from the mean RMSECV plots in Fig. 2a
and d that using row minima as the SRD targets results in lower
SRD rank values starting at 25 LVs and the 80th ridge parameter
(h=5.6�10�4). Thus, additional model merits are needed as these
models are overfitted. Including the block of respective 100 LMOCV
L2 norm results in the SRD 7-fold CV boxplots presented in Fig. 3c
and d. By including the L2 norm for a model complexity and
variance indicator, the SRD process now ranks 11 LVs the lowest for
PLS (ignoring the 1 LV model) and ridge parameter 61 (h =8.8
�10�3) for RR (ignoring approximately the first twenty ridge
parameters). Substituting J for the L2 norm results in similar plots
to Fig. 3c with no change in the lowest ranked PLS model and the
lowest ranked RRmodel is now ridge parameter 68 (h=3.1�10�3).
Results from combining the RMSECV and L2 norm CV blocks for PLS
and RR into one SRD are displayed in Fig. 4. These plots indicate
that PLS and RR are modeling equivalently.

Other model merits can be included in the SRD process. Shown
in Fig. 5 are the PLS and RR SRD results using only calibration
information based on the RMSEC, C1, J, and L2 norm values. In this
case,17 PLS LVs and ridge parameter 65 (h =4.8�10�3) obtain clear
lowest rankings. The change in rankings of the tuning parameters
is due to including more model merits and SRD assessing a
consensus in the rankings relative to row wise target values. To
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further characterize the consensus nature of SRD, shown in Fig. 6a
is an image of the SRD input matrix for RR. This SRD input matrix
sorted to the SRD rankings from low to high is imaged in Fig. 6b.
From this image, the models sustaining consistency to the targets
are ranked lowest. The image in Fig. 6c is the RMSECV image in
Fig. 1b sorted to the SRD rankings showing that the SRD ranked
tuning parameters provide consistently low RMSECV values.

Augmenting the previous calibrationmerits with the split-wise
CV results for RMSECV and C2 provides SRD results similar to that
shown in Fig. 5a and b with the lowest ranked model for PLS
moving to 15 PLS LVs and the ridge parameter remained at 65.
Combining these additional model merits with the previous ones
into one SRD for PLS and RR showed that PLS and RR are
performing consistently similar.
[(Fig._6)TD$FIG]

Fig. 6. Corn data images for the situation in Fig. 5 with (a) the input SRDmatrix, (b)
the input SRDmatrix in (a) sorted to the SRD rankings from lowon the left to high on
the right, and (c) the RMSECV matrix in Fig. 1b sorted to the SRD rankings. For (a)
and (b), the four CV blockswith 100matching splits each are in the order RMSEC, C1,
J, and L2 norm. Each row of the SRD input matrix was scaled to unit length. The
RMSECV matrix in (c) are actual values.
Another variation of the SRD input matrix generated the
boxplots shown in Fig. 7 for PLS and RR. In this variation, 18 blocks
of model merits were used consisting of RMSEC, R2

cal, slopecal,

interceptcal, RMSECV, R2
cv, slopecv, interceptcv, C1, using J in C1, the

corresponding two variation of C1 using RMSECV, C2, using
respective R2 values in C2, and two other variations of C2 missing
R2 with RMSE values, J, and L2 norm. With these model merits, the
14 PLS LV model is ranked lowest and the ridge parameter model
65 (h =4.8�10�3) is ranked lowest. Depending on the actual
merits used in SRD, the lowest rankedmodels can vary, but remain
in close proximity to each other indicating that there is probably
not one bestmodel and a collection ofmodels can be useful and are
essentially equivalent. The final model choice of the user depends
on the tradeoffs desired for the final model. Using these 18 model
merits to evaluate PLS and RR together provided similar results to
that presented in Fig. 4 with the PLS and RRmodeling equivalently.

Rather than using all the respective individual LMOCV results
for different merit blocks in the SRD input matrix, the correspond-
ing mean LMOCVmerit values can be used as single rows provided
that enough model merits are included to reduce the chance of
random rankings (typically 7 or more rows for the SRD input
matrix, but more are better). In this case, the SRD input matrix is
considered as one block. Shown in Fig. 8 is an example of the CRRN
result based on an SRD input matrix composed of one block with
18 rows with each row being the respective mean CV values of the
18 model merits previously used. As a reminder, the CRRN process
involves random distributions based on random numbers for a
small number of objects and the normal distribution, as used in
this case, for a large number of objects. The reader is referred to
reference [34] for the details of CRRN. Listed are the SRD top five
rankings for PLS and RR. The results are essentially the same as
those ranked best by the SRD evaluation of the same merits in
block format and validated by the CV of the SRD input matrix to
form the boxplots. Listed in the outlined boxes shown in Fig. 8 are
the PLS LVs and RR ridge parameters followed by the SRD
normalized rankings and then the probabilities. From the listed
[(Fig._7)TD$FIG]

Fig. 7. Corn data SRD boxplots for (a) PLS and (b) RR using 18 blocks ofmodelmerits

consisting of RMSEC, R2
cal, slopecal, interceptcal, RMSECV, R2

cv, slopecv, interceptcv,
C1, using J in C1, the corresponding two variation of C1 using RMSECV, C2,
using respective R2 values in C2, and two other variations of C2 using R2

with RMSE values, J, and L2 norm.



[(Fig._8)TD$FIG]

Fig. 8. Differences between random and actual corn model rankings (SRD corn
CRRN plots) for (a) PLS and (b) RR with the respective five lowest rank models. For
PLS, the first number in each box is the PLS LV model and the first value in the
parenthesis is the SRD ranking followed by the probability density function value. It
is similar for RR except the first numbers in each box are the RR ridge parameters
with actual ridge values of 65 (4.8�10�3), 66 (4.1�10-3), 64 (5.6�10�3), 67
(3.6�10�3), and 68 (3.1�10�3).
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Fig. 9. QSAR CV split-wise RMSECV plots for (a) PLS and (b) RR for the 100 LMOCVs
and respective tuning parameters. Starting at ridge parameter 1, 80 ridge values
range from 11,383 to 1.2�10�4 at ridge parameter 80. Black lines are the mean
RMSECV values.
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probabilities in conjunctionwith the plotted probability functions,
it can be observed that the model rankings are by no means
random rankings because these SRD model rankings are not
located within the plotted random distributions.

When using the SRD process to evaluate model tuning
parameters as in this paper, it is important to have merits
balancing model tradeoffs such as the bias/variance tradeoff. For
example, with PLS, if the onlymodelmerits used in an SRD analysis
minimize toward the maximum number of LVs (the overfitted

region) such as with RMSEC, 1� R2
cal, etc., then the SRD algorithm
Table 1
Corn data mean PLS and RR LMOCV model merit values for models with low SRD rank

Method PLS LV or ridge parameter (h) RMSECV

PLS 9 0.137
PLS 10 0.133
PLS 11 0.123
PLS 12 0.118
PLS 13 0.113
PLS 14 0.108
PLS 15 0.109
PLS 16 0.108
PLS 17 0.108
RR 60 (1.0�10�2) 0.136
RR 61 (8.8�10�3) 0.131
RR 62 (7.5�10�3) 0.126
RR 63 (6.5�10�3) 0.122
RR 64 (5.6�10�3) 0.118
RR 65 (4.8�10�3) 0.114
RR 66 (4.1�10�3) 0.111
RR 67 (3.6�10�3) 0.109
RR 68 (3.1�10�3) 0.107
with minima set as the target reference values will sort these
overfitted models with the lowest SRD rank values.

Tabulated in Table 1 are final model merits for those models
with low ranks from all the above variants of model merits with
and without SRD. The “best”model with the lowest SRD ranking is
going to depend onwhich specificmodelsmerits are used. Asmore
model merits are included in an SRD analysis, the less variation
there is in the listed model merits. For PLS, this tends to be the
higher number of LVs in Table 1 and the smaller ridge parameter
values for RR.

For a more specific statistical comparison between models, the
uncertainties computed by the SRD CV process can be evaluated by
a Wilcoxon signed rank test at a given significance level. For
example, testing RR models 67 and 68 in Fig. 7b at the 5%
significance level shows that there is no difference between the
models. Testing models 66 and 67 results in a statistical difference.
Testing the low ranked PLS models in Fig. 7a reveals that the
ings based on different SRD input model merits.

R2 Slope Intercept k b̂ k2
0.926 0.94 0.53 63.3
0.930 0.95 0.46 68.3
0.940 0.96 0.35 83.0
0.945 0.96 0.30 98.8
0.949 0.96 0.28 109
0.954 0.97 0.26 125
0.954 0.97 0.23 146
0.955 0.97 0.21 171
0.955 0.98 0.20 193
0.927 0.91 0.79 56.9
0.933 0.92 0.70 61.1
0.937 0.93 0.63 65.8
0.942 0.93 0.57 70.9
0.945 0.94 0.51 76.6
0.948 0.95 0.46 82.9
0.951 0.95 0.42 89.8
0.953 0.95 0.39 97.6
0.955 0.96 0.35 106
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Fig. 10. Expanded QSAR model merit graphics of (a) PLS and (b) RR mean model
merits plotted against the mean model L2 norm values for RMSECV (blue triangles),
RMSEC (red circles), C1 (green diamonds), C2 (brown squares), and C2 with
respective R2 values replacing the RMSE values (black right facing triangles). Values
are scaled to fit in plot. Numbers in (a) correspond to number of LVs and in (b), the
ridge parameters. Ridge values trend from large on left to small on the right. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 11. QSAR data SRD boxplots using 7-fold CV on the (a) PLS 100 LMOCV RMSECV bloc
blocks, and (d) respective RR RMSECV and L norm blocks.
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Fig.12. QSARdata SRD boxplots from combing the PLS and RR RMSECV and L2 norm
values into one SRD.
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models are all unique. While not studied in this paper, the
Wilcoxon signed rank test can also be used to compare PLS models
to RR models.

Models with low SRD rankings can be used in a consensus
approach. To successfully utilize consensus modeling, a high
degree of prediction accuracy is desired in combination with a
small but noteworthy difference between the selected models
(model diversity) [32,63–65]. Once a collection is selected, various
methods exist to form the composite prediction from thesemodels
such as the simple approach of using the mean prediction. The
collection can be a mix of PLS and RR models as well as from a
single modeling method. This approach was not evaluated in this
study.

6.2. QSAR

Rather than showing RMSECV blocks as images as donewith the
corn data, drawn in Fig. 9 are the 100 individual andmean RMSECV
plots for PLS and RR. From these plots, models to select are more
obvious than with the corn RMSECV graphics. Displayed in Fig. 10
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k in Fig. 9a, (b) respective RMSECV RR block in Fig. 9b, (c) PLS RMSECV and L2 norm
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Fig. 13. QSAR boxplots of (a) PLS and (b) RR SRD results from using 18 blocks of

model merits consisting of RMSEC, R2
cal, slopecal, interceptcal, RMSECV, R2

cv,
slopecv, interceptcv, C1, using J in C1, the corresponding two variation of C1
using RMSECV, C2, using respective R2 values in C2, and two other variations
of C2 missing R2 with RMSE values, J, and L2 norm.
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are the PLS and RR graphics plotting mean RMSECV and RMSEC
values against the mean model L2 norm. Also plotted with these
graphics are mean C1 and C2 (where C2 has been inverted for
maximization) aswell as C2with respective R2 values replacing the
RMSE values. Using J values instead of the L2 normvalues produces
similar plots. As expected from the block of individual RMSECV
values and mean plots in Fig. 9, selecting the tuning parameters
from the othermeanmodel merits results in similar selections. For
PLS, the minimum RMSECV is at 15 LV and the C2 merit in both
formats forms minima at 13 LVs. The range from 13 to 15 LVs is in
the corner region of the RMSEC L-curve. Models based on
16 through 20 are also in the corner region. While not apparent
in Fig. 10a, the mean C1 merit minimizes for PLS at 34 LVs and
provides an overfitted model selection. Replacing RMSEC in
C1 with RMSECV, produces a minimum at 15 LVs.
Table 2
QSAR data mean PLS and RR LMOCV model merit values for models with low SRD ran

Method PLS LV or ridge parameter (h) RMSECV

PLS 13 0.470
PLS 14 0.462
PLS 15 0.461
PLS 16 0.464
PLS 17 0.463
PLS 18 0.463
PLS 19 0.462
PLS 20 0.461
PLS 21 0.466
RR 30 (7.3) 0.505
RR 31 (5.7) 0.482
RR 32 (4.4) 0.464
RR 33 (3.4) 0.452
RR 34 (2.6) 0.445
RR 35 (2.0) 0.441
RR 36 (1.6) 0.440
RR 37 (1.2) 0.440
RR 38 (0.96) 0.442
Similar trends are present for RR in Fig. 10b. Ridge parameters
selected using the plots from mean RMSECV, C2, and C2 with R2

values are 36 (h=1.6), 33 (h =3.4), and 33, respectively. These ridge
parameters are in the corner regions of the mean RMSEC L-curve.
Themean C1 merit identifies ridge parameter 50 (h =4.6�10�2) at
the minimum and replacing RMSEC with RMSECV in C1 ascertains
ridge parameter 36 at the minimum.

Evaluated first with SRD are the 7-fold CV boxplots in Fig. 11
based on using the PLS and RR RMSECV blocks plotted in Fig. 9.
Interesting that with SRD, the 19 LV model is deemed lowest rank
relative to target minimization and hence, the most consistently
minimized LV across the 100 LMOCV. Using the Wilcoxon signed
rank test at the 5% significance level reveal no difference between
LVs 19 through 22. There appears to be a local minimum from
15 through 17 LVs and this is the region identified in the single
merit plots in Fig. 10. For RR in Fig. 11b, the model with ridge
parameter 36 is the lowest consistently ranked model.

Including blocks of the respectivemodel complexitymeasure L2
norm for PLS and RR forms the plots shown in Fig. 11c and d. The
same models are ranked the lowest as with just the RMSECV
blocks, but for PLS,models 13 through 17 have similar ranks. Unlike
with the corn data, when PLS and RR RMSECV and L2 norm values
are combined into one SRD, Fig. 12 shows that RR provides lower
rankedmodels than PLS.With the corn data, PLS and RR essentially
performed equivalently as portrayed in Fig. 4.

As with the corn data, other merits can be combined for an SRD
evaluation. Which merits depend on what the user defines as best
for their purposes. For this QSAR data set and prediction property,
using only calibration merits pushes the tuning parameters to the
overfitted regions. Unlike with estimating the protein prediction
property with the corn data, some form of CV appears necessary in
this QSAR instance. Presented in Fig. 13 are boxplots for PLS and RR
from using the 18 blocks of model merits used with the corn data

composed of RMSEC, R2
cal, slopecal, interceptcal, RMSECV, R2

cv,
slopecv, interceptcv, C1, using J in C1, the corresponding two
variations of C1 using RMSECV, C2, using respective R2 values in C2,
and two other variations of C2 missing R2 with RMSE values, J, and
L2 norm. Using this mix of calibration and validation merits results
in 14 LV being ranked the lowest for PLS and ridge parameter
model 33 for RR. As with the corn data, the boxplot box sizes are
substantially reduced indicating better regularity in the SRD
rankings. Using these 18 model merits for an SRD analysis of PLS
and RR simultaneously showed PLS to have a smaller SRD ranking
by one unit than RR at the respective lowest ranked models of
14 LVs and ridge parameter 33.
kings based on different SRD input model merits.

R2 Slope Intercept k b̂ k2
0.777 0.84 0.52 0.58
0.786 0.85 0.48 0.63
0.788 0.85 0.46 0.69
0.788 0.86 0.44 0.74
0.789 0.87 0.43 0.80
0.790 0.87 0.41 0.88
0.790 0.87 0.41 0.95
0.790 0.87 0.42 1.04
0.786 0.87 0.42 1.14
0.740 0.73 0.84 0.29
0.762 0.76 0.76 0.36
0.779 0.78 0.68 0.43
0.791 0.81 0.62 0.52
0.798 0.82 0.56 0.60
0.802 0.84 0.52 0.69
0.804 0.85 0.49 0.80
0.805 0.85 0.46 0.93
0.804 0.86 0.44 1.10
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Tabulated in Table 2 are final model merits for those models
with low ranks from the different SRD input matrices as expressed
above as well as the described signal merits. As with the corn data
set, the better models listed in Table 2 are those deemed “best” by
usingmultiplemodelmerits compared to thosemodels selected by
singlemerits. As a reminder, the user can useWilcoxon signed rank
tests to evaluate uniqueness of specific models whether the goal is
between different modeling methods or within a modeling
method.

7. Conclusions and SRD recommendations

The goal of this paper is not to show that one modeling method
is better than another, but to develop SRD as a tool for selecting
tuning parameters and comparing models. Using SRD allows
multiple model merits to be used for selection of model tuning
parameters. The lowest ranked model can be selected or,
alternatively, a collection of models with low SRD rankings can
be used in a consensus approach. The collection of models can be
for a singlemodelingmethod aswell as amix of differentmodeling
methods such as PLS and RR. The SRD corresponds to the principle
of parsimony and the SRD CV process to form boxplots provides
uncertainties for the variables (columns) and the differences can
be tested in a statistically correct way.

The better models are those having the most consistency across
the differentmodel merits evaluated.When a CV process is used to
generate the model merits, then SRD allows the models merits
computed on each data split to be evaluated, not just the mean
values as in the standard CV proves of selecting a tuning parameter.
The more model merits included to characterize the bias/variance
tradeoffs, the less variation in the SRD CV boxplots for the lowest
rankedmodels. Only a limited set of combinations of model merits
were evaluated with SRD in this study. Not studied in this paper
was using other model merits such as Mallow’s Cp criterion, AIC
[43–46], etc. to build up the number of objects for SRD. Which
actual tuning parameters are ranked lowest by SRD depends on
which model merits are used. As with any tuning parameter
selection process, it is up to the user to decide which model merit
(s) is to be used to evaluate the tuning parameters. The SRD process
allows rapid comparison of the consistency of tuning parameters
as model merits vary by the user.

As noted, evaluation of the consistencies of model tuning
parameters can be enhanced by increasing the number of model
merits. In this study only the composite split-wise merit values
were used, e.g., one row of RMSECV values for each CV split.
Additional SRD blocks can be included using the actual predicted
values of all samples in each respective split. For example, for each
RMSECV row, a block of ŷcv values (r by number of tuning
parameters for r validation samples) could be included. Target
reference values would be the corresponding reference values yval.
Alternatively, the SRD input values could be jŷcv � ycvj with target
values of row minima. Similarly, additional blocks for the SRD
inputmatrix could be added based on different types of CV splits as
well as perturbing the data with noise and creating sets of merit
blocks for each noise perturbation.

The SRD process described in this study is generic and should be
applicable to other multivariate calibration methods involving
selection of single tuning parameters such as the TR variant known
as least absolute shrinkage and selection operator (LASSO),
principal component regression (PCR), and others. Under current
study is using SRD with multivariate calibration processes that
involve multiple tuning parameters. The SRD process is a simple
general method that is finding more uses.

With multivariate calibration, variable selection (wavelength
selection with optical spectroscopic data) is often used to reduce
prediction errors and improve robustness. In this paper, full
wavelengths were used with the corn data and all the provided
variables were used with the QSAR data. Using SRD, it is possible to
select tuning parameters for models generated by variable
selection processes. Various variable selected models can also be
compared to full variablemodels by SRD. The SRD process provides
a natural way to impartially compare different modeling methods.

The reader should note that SRD has two operational modes.
That is, for many applications, the SRD input matrix can be
transposed where the objects are now the variables and the
variables are now the objects. Transposing the SRD input matrices
for the situations studied in this paper was not investigated. Such
an operation should allow comparison of themodel merits. That is,
the merits would be ranked by how consistently the respective
merits meet the respective target values. The lowest rankedmerits
could be deemed “best”.
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