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Elucidating kinetic information (rate constants) from temporally resolved

hyperspectral confocal fluorescence images offers some very important

opportunities for the interpretation of spatially resolved hyperspectral

confocal fluorescence images but also presents significant challenges, these

being (1) the massive amount of data contained in a series of time-resolved

spectral images (one time course of spectral data for each pixel) and (2)

unknown concentrations of the reactants and products at time ¼ 0, a

necessary precondition normally required by traditional kinetic fitting

approaches. This paper describes two methods for solving these problems:

direct nonlinear (DNL) estimation of all parameters and separable least

squares (SLS). The DNL method can be applied to reactions of any rate

law, while the SLS method is restricted to first-order reactions. In SLS, the

inherently linear and nonlinear parameters of first-order reactions are

solved in separate linear and nonlinear steps, respectively. The new

methods are demonstrated using simulated data sets and an experimental

data set involving photobleaching of several fluorophores. This work

demonstrates that both DNL and SLS hard-modeling methods applied to

the kinetic modeling of temporally resolved hyperspectral images can

outperform traditional soft-modeling and hard/soft-modeling methods

which use multivariate curve resolution–alternating least squares (MCR-

ALS) methods. In addition, the SLS method is much faster and is able to

analyze much larger data sets than the DNL method.

Index Headings: Hyperspectral confocal microscopy; Fluorescence imag-

ing; Photobleaching; Kinetic modeling; Hard modeling; Soft modeling;

Multivariate curve resolution; MCR; Separable least squares; SLS; Direct

nonlinear estimation; DNL.

INTRODUCTION

Hyperspectral confocal fluorescence imaging is a newly
developed technology with many promising advantages over
filter-based confocal fluorescence imaging. The development
of filter-based confocal fluorescence microscopes enabled
scientists to monitor biological samples with several fluores-
cently tagged stains or proteins in living cells. However, filter-
based instruments are limited in the number of fluorescent tags
that can be resolved simultaneously because of their limited
spectral resolution. Hyperspectral confocal microscopy can be
used to overcome these limitations by acquiring higher spectral
resolution at hundreds of wavelength channels for each pixel or
voxel in the image and by using chemometric methods for
subsequent mathematical resolution of multiple overlapping
fluorophores. Massive data sets (e.g., 200 pixels 3 200 pixels 3

512 wavelength channels per pixel 3 18 time points) can be
produced in a single experiment at a rate of 8300 spectra per
second.1 When represented as 8 bytes per point for floating
point calculations, these large image data sets (3 Gbytes each)

can pose significant challenges to chemometric data processing
methods.

Three types of multivariate modeling algorithms are
discussed in this work: soft-modeling, hard-modeling, and
hard/soft-modeling algorithms. Soft-modeling algorithms, such
as multivariate curve resolution–alternating least squares
(MCR-ALS), are very useful for estimating physically relevant
pure-component concentration profiles and their corresponding
pure-component spectra with very little or no a priori
knowledge.2 One drawback of this approach is that little
information about the underlying mechanism of time-depen-
dent change in the system is revealed. Hard-modeling
techniques, such as kinetic modeling, are very useful for
estimating time-dependent concentration profiles of a system
that can be described by first-principle physical models, but
they have the limitation that all components in the system must
strictly follow the proposed reaction mechanism.3–6 Hard/soft-
modeling is a hybrid of soft-modeling and hard-modeling
methods. It allows the concentration profile of some of the
individual species to be constrained to follow a proposed
mechanism while allowing greater flexibility in the shapes of
time-dependent concentration profiles for the remaining
components.7–9 Although rate constants can be roughly
estimated from soft-model-derived concentration profiles by
directly fitting a model-based curve to the time-resolved
concentrations, the hard/soft-modeling and hard-modeling
techniques employed in this work introduce kinetic models
into the modeling algorithm in order to obtain more accurate
estimates of rate constants and to reduce rotational ambigui-
ties10 associated with soft-modeling techniques.

Existing multivariate hard-modeling techniques have been
utilized in numerous kinetic applications including monitoring
and controlling batch processes,11–13 modeling of the com-
plexation kinetics of metals,14–18 and modeling solvent-free
organic reactions.19

In existing multivariate hard-modeling techniques, the
concentrations of all species at time zero (t0) in the postulated
model must be known. In some applications, it is not possible
to know the initial concentrations (concentrations at t0) of all
species in a given system. For example, in a hyperspectral
fluorescence microscope image of a biological specimen with
fluorescently labeled proteins or stains, it is very unlikely that
the initial concentrations of all fluorescing species will be
known. Thus, in order to kinetically model these types of
systems using hard-modeling, new techniques must be
developed.

Two hard-modeling techniques have been developed in this
investigation for systems with unknown initial concentrations
(e.g., temporally resolved hyperspectral fluorescence images):
(1) direct nonlinear fitting (DNL) and (2) separable least
squares fitting (SLS). In the DNL approach, all parameters
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including rate constants and initial concentrations are estimated
with a nonlinear solver. In the SLS approach, the inherently
linear parameters (concentrations at t0) and nonlinear param-
eters (rate constants) are separated and solved in succession.

The concept of separating the nonlinear least squares
problem of a physical (hard) model from the linear least
squares problem of determining amplitudes has been applied to
resolving multicomponent fluorescence spectra from an
emission wavelength-decay time data matrix,20 for resolving
overlapped chromatographic peaks in gas chromatography/
mass spectroscopy (GC/MS) data21 and liquid chromatograph/
ultraviolet–visible (LC/UV-Vis) data,22 for resolving multiple
components from spectra/pH titration experiments,23 and most
recently for resolving multiple-component adsorption iso-
therms.24

As in soft modeling, only relative concentrations of the
spectroscopically distinct species present in these images are
generally obtained using these two hard-model approaches.
The DNL approach can be applied to reactions of any reaction
order while the SLS method is restricted to first-order reactions.
The remainder of this paper is focused on describing, applying,
and comparing the above mentioned techniques to simulated
data and a temporally resolved hyperspectral fluorescence
microscope image of fluorescently labeled beads.

For the measured images studied in this paper, the
fluorescently labeled beads undergo photobleaching induced
by the laser excitation light used by the confocal microscope.
We demonstrate our kinetic fitting method by elucidating
kinetic models and fitting rate constants to this photobleaching
process. It should be noted that time-dependent photobleaching
will generally lead to different rates of bleaching for each
fluorophore, resulting in the distortion of three-dimensional
component maps obtained with the confocal microscope
fluorescence microscope. Thus, fitting kinetic models to
photobleaching processes may lead to novel methods of
correcting photobleaching induced image distortions.

THEORY

The analysis of temporally resolved hyperspectral image data
sets is based on the linear additive model expressed in Eq. 1:

Di
ðm 3 nÞ ¼ Ci

ðm 3 zÞS
T
ðz 3 nÞ þ Ei

ðm 3 nÞ ð1Þ

where Di is a matrix of spectra acquired from the ith spatial
pixel at m different times and n wavelengths, Ci is a matrix of
pure-component concentration profiles for z species, S is a
matrix of the z pure-component spectra measured at n
wavelengths, and E is the error or residual matrix. For clarity,
a definition of all symbols used throughout this section is
included in Table I.

There are two main approaches for mathematically resolving
the pure-component concentration profiles and pure-compo-
nent spectral profiles from a temporally resolved multivariate
data set. These are denoted as soft-modeling and hard-
modeling techniques, and each method has advantages and
disadvantages.25–27

Soft-modeling methods utilize physically meaningful con-
straints such as non-negativity in concentration profiles and
spectral profiles to obtain physically interpretable pure-
component profiles. A soft-modeling method based on MCR-
ALS was used in this investigation.28–30 In MCR-ALS, random
numbers are used as initial estimates for the pure-component

spectra, which are then used to estimate the pure-component
concentration profiles as shown in Eq. 2:

Ĉ ¼ DðSTÞþ ð2Þ

where Ĉ represents the least squares estimate of C and (ST)þ is
the pseudo inverse of ST. The estimated concentration profiles
are then used to estimate the pure-component spectra as shown
in Eq. 3.

Ŝ
T ¼ Ĉ

þ
D ð3Þ

The pure-component concentration profiles and pure-compo-
nent spectra are then solved in an iterative fashion until a
minimum change in the residuals is observed. Non-negativity
constraints were applied to the pure-component concentration
profiles and pure-component spectra by solving Eqs. 2 and 3
using the fast combinatorial non-negative least squares (fc-
nnls) method.31 In order to obtain kinetic information from the
soft-modeling results, model-based concentration profiles are
fit to the soft-model estimated concentration profiles.

In hard-modeling methods, pure-component concentration
profiles are constrained to strictly follow a specific mechanistic
model and nonlinear least squares fitting is used to fit model
parameters to experimental data. Traditional kinetic modeling
techniques applied to multivariate spectral experiments when
initial concentrations of all species are known are well
documented in the literature.32–34

Hard/soft-modeling algorithms have been developed that
attempt to take advantage of the strengths of both hard- and
soft-modeling techniques. In hard/soft-modeling, model-based
curves are fit to the concentration profiles obtained from Eq. 2
and are subsequently used for solving Eq. 3. These hard/soft-
modeling algorithms have been previously described; the
reader is referred to the literature for a more in-depth
description.7–9

Both soft-modeling and hard-modeling techniques can be
performed on a single or several temporally resolved
multivariate data sets simultaneously, as shown in Fig. 1a. In

TABLE I. Description of symbols used in the Theory section.

Symbol Description

i Number of spatial (image) pixels
j Spectral response index (column of D or row of S)
m Number of time points
n Number of spectral responses (wavelengths)

P
Number of spatial pixels included in the estimate of mean

absolute deviation (MAD)
t Time
z Number of species
k Rate constants
Ci Time-dependent concentration profiles for ith pixel

ci
z

Time-dependent concentration profile for the zth specie in
the ith pixel

ci
0 Initial concentrations (t0) for the ith pixel

Di Temporally resolved spectral data matrix for the ith pixel
di

vec Matrix Di vectorized
Ei Error matrix for the ith pixel
ei

vec Matrix Ei stacked into a vector
Fz Matrix of z basis functions invariant over wavelength
fz Basis function describing the zth specie
S Pure-component spectral matrix

Uj
Matrix of z basis functions scaled by the spectral response at

wavelength j
Ustack Matrix of Uj for all wavelengths stacked on top of each other
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Fig. 1a, each of the matrices D1, D2, . . ., Di, represent spectra
measured at spatially resolved pixels 1, 2, . . ., i as a function of
time, and C1, C2, . . ., Ci represent the corresponding time-
dependent concentration profiles of the z species in each pixel.
Using this extended model, Eqs. 2 and 3 are easily applied to
several temporally resolved multivariate data sets (pixels)
simultaneously. The simultaneous analysis of multiple exper-
iments or multivariate data sets has been shown to be critical
for breaking linear dependencies and reducing ambiguities
observed in the analysis of single multivariate data sets.4,10,35

For the simultaneous analysis of multiple pixels we will show
in this work that it is possible to model cases in which emitting
species have either identical rate constants or identical pure-
component spectra as long as (1) the relative concentrations of
each emitting specie differ between two or more pixels
analyzed and (2) there is sufficient spectral or temporal
separation of species. This investigation is focused on kinetic
modeling, but it is noteworthy that the spectral modeling
algorithms applied to kinetic experiments here may be applied
to equilibrium experiments as well.33

There are several standard steps in any kinetic modeling
procedure. The first step is to postulate a kinetic mechanism. A
system of ordinary differential equations (ODE’s) is then
derived for the proposed model, and for many relatively simple
mechanisms, the equations can be explicitly integrated to
compute time-dependent concentration profiles. For more

complex models, it is necessary to use numerical integration.
Concentration profiles can then be computed given initial
concentrations and estimates for the model parameters. By
fitting the resulting concentration profiles for all apparent
species to the spectroscopic measurements, the model param-
eters may be optimized by standard linear or nonlinear
estimation methods as appropriate.34

This investigation has focused on the development of the
two previously mentioned hard-modeling algorithms (DNL and
SLS) in which nonlinear parameters and concentrations at t0
(i.e., initial concentrations) are optimized simultaneously. In
both of these techniques as in soft-modeling, the absolute
concentrations cannot be estimated; however, the relative intra-
specie concentrations can be obtained, and given the
assumption of similar intensity response for all species, relative
inter-specie concentrations can be determined. This assumption
is implemented in the form of a normalization step, which is
necessary to prevent intensity ambiguities in the fitting process
that are commonly observed in soft-modeling techniques.10

The following subsections include in-depth descriptions of the
DNL and SLS algorithms. All algorithms were developed and
tested using the Matlabt Version 7.4 environment.

Direct Nonlinear Estimation of Initial Concentrations.
An initial estimate of the time-dependent concentration
profiles, C1, C2, . . ., Ci, for all i pixels is constructed using a
proposed mechanism and an initial ‘‘random guess’’ for the

FIG. 1. (a) Linear additive model for the simultaneous analysis of several temporally resolved multivariate data sets. (b) Illustration of analyzing the jth column of D
with the use of Eq. 8. (c) Stacking method for the simultaneous analysis of several temporally resolved multivariate data sets using the SLS approach. Note that the
error term is omitted from all figures presented here.
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parameters, e.g., rate constants, k, and concentrations at t0 for
all z species in each pixel, i, c1

0, c2
0, . . ., ci

0. Specific mechanisms
and algorithm initializations are discussed in a later section.
The estimated concentration profiles are used to estimate the
pure-component spectra, S, using the linear least squares
estimation step in Eq. 3 extended to several multivariate data
sets. The pure-component spectra are then normalized to unit
length. The interior-reflective Newton method36,37 (Matlabt

optimization toolbox Version 3.1.1 lsqnonlin.m) of nonlinear
estimation is used to estimate the model parameters, c1

0, c2
0, . . .,

ci
0, and k, by minimizing Eq. 4:

jj½ðD1ÞTjðD2ÞTj � � � jðDiÞT�T � ½ðC1ÞTjðC2ÞTj � � � jðCiÞT�TSTjj
ð4Þ

where Ci represents the time-dependent concentration profiles
in the ith pixel for z species such that Ci ¼ [ci

1 j ci
2 j � � � j ci

z],
and ci

z ¼ ci
0ðzÞ fz(kz, t), where ci

0ðzÞ represents the initial
concentration of specie z in pixel i and fz(kz, t) represents the
corresponding kinetic rate law for specie z. By way of
example, consider a model for the first-order kinetic decay of z
¼ 3 species in an image of i ¼ 5 pixels. The resulting model
would require fitting 3 3 5¼ 15 initial concentrations, c0, and
three rate constants, k. The nonlinear fitting method used in this
work permits upper or lower bounds to be applied to the model
parameters, allowing for easy implementation of non-negativ-
ity constraints on the estimated initial concentrations ci

0ðzÞ.
Separable Least Squares Estimation of Initial Concen-

trations. A key feature in the SLS algorithm is the separation of
the intrinsically linear parameters, ci

0ðzÞ, and nonlinear parame-
ters, kz. Consider the set of observations, di

j, measured over time at
wavelength j in pixel i. As shown in Eq. 5, di

j may be
approximated by a set of linear parameters gi

1, gi
2, . . ., gi

z and a
set of time-dependent basis functions, f1, f2, . . ., fz, which are
dependent on the nonlinear parameters k1, k2, . . ., kz.

di
j ¼ gi

jð1Þ f1ðk1; tÞ þ gi
jð2Þ f2ðk2; tÞ þ � � � þ gi

jðzÞ fzðkz; tÞ þ ei
j ð5Þ

An error term, ei
j, is included as well. Defining gi

j ¼ [gi
jð1Þ j gi

jð2Þ
j � � � jgi

jðzÞ]
T, k¼ [k1jk2j � � � jkz], and F¼ [ f1j f2j � � � j fz], Eq. 5

can be re-written in matrix form as shown in Eq. 6, and the

linear parameters, ĝi
j, can be estimated by the linear least

squares procedure shown in Eq. 7:

di
j ¼ Fðk; tÞgi

j þ ei
j ð6Þ

ĝi
j ¼ Fðk; tÞþdi

j ð7Þ

The nonlinear parameters, k, may be estimated in a separate
step with a nonlinear optimization routine by minimizing ||di

j �
F(k, t)gi

j ||. The principles of this approach can be applied to any
system in which the intrinsically linear and nonlinear
parameters are separable.38

In this work, SLS is applied specifically to the mechanism of
first-order decay. The remainder of this section describes the
details of its implementation. A univariate subset of the
multivariate linear additive model expressed in Eq. 1 is
expressed in Eq. 8 and Fig. 1b for pixel i and wavelength j:

di
j ¼ CisT

j þ ei
j ð8Þ

where sj is the jth row of S. The set of basis functions describing
the mechanism of first-order decay is summarized in Eq. 9:

Fðm 3 zÞ ¼ ½e�k1tje�k2tj � � � je�kzt� ð9Þ

where kz represent the first-order decay rates for the z
components, respectively. The matrix of concentration profiles,
Ci, is obtained from the set of basis functions and the vector of
initial concentrations of the z species in pixel i, ci

0, as shown in
Eq. 10:

Ci
ðm 3 zÞ ¼ F diagðci

0Þ ð10Þ

where diag(x) transforms x into a square matrix with x along
the diagonal and zeros elsewhere. Substituting Eq. 10 into Eq.
8 gives Eq. 11:

di
j ¼ F diagðci

0ÞsT
j þ ei

j ð11Þ

where the product diag(ci
0)sT

j is analogous to gi
j in Eq. 6.

Equation 11 may be rearranged into Eq. 12, showing how the
linear parameters can be separated from the nonlinear
parameters:

di
j ¼ F diagðsT

j Þci
0 þ ei

j ð12Þ

Defining the matrix Uj in Eq. 13 allows Eq. 12 to be simplified
to Eq. 14:

Ujðm 3 zÞ ¼ F diagðsT
j Þ ð13Þ

di
j ¼ Ujc

i
0 þ ei

j ð14Þ

The z initial concentrations for pixel i, ĉ i
0, are estimated using

Eq. 15, which is an applied form of Eq. 7:

ĉi
0 ¼ Uþj di

j ð15Þ

The procedure described above for finding the initial
concentrations for a temporally resolved univariate data set
can be applied to a multivariate data set of time-resolved
spectra in the ith pixel by vectorizing Di into di

vecðm�n 3 1Þ as
shown in Eq. 16:

di
vec ¼ vecðDiÞ ð16Þ

where vec(X) transforms X into a column vector with one
column stacked onto the next. By stacking Uj for all n
wavelengths, we form Ustack as shown in Eq. 17:

Ustackðm�n 3 zÞ ¼ ½UT
1 jUT

2 j � � � jUT
n �T ð17Þ

Substituting the stacked representations into Eq. 13 gives Eq.
18, which is shown as columns in Fig. 1c:

di
vec ¼ Ustackci

0 þ ei
vec ð18Þ

Similarly to Eq. 15, the z initial concentrations for the ith pixel
are estimated using Eq. 19:

ĉi
0 ¼ Uþstackdi

vec ð19Þ

This procedure for separation of the linear and nonlinear
parameters may be applied simultaneously to many pixels in a
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temporally resolved hyperspectral image by augmenting data
from several pixels as shown in Eq. 20 and Fig. 1c:

½d1
vecjd2

vecj � � � jdi
vec�ðm�n 3 iÞ ¼ Ustackðm�n 3 zÞ½c1

0jc2
0j � � � jci

0�ðz 3 iÞ
þ ½e1

vecje2
vecj � � � jei

vec�
ð20Þ

where the vectors di
vec and ci

0 correspond to the stacked spectral
data and column vector of initial concentrations, respectively,
for pixel i. The initial concentrations for all pixels are then
estimated using Eq. 21:

½ĉ1
0jĉ2

0j � � � jĉi
0� ¼ Uþstack½d1

vecjd2
vecj � � � jdi

vec� ð21Þ

In the algorithmic implementation of Eq. 21, a fast combina-
torial nonnegative least squares (fc-nnls)31 method is used to
solve for the initial concentrations.

In the algorithmic implementation of SLS, random initial
parameter ‘‘guesses’’ are used to construct pure-component
concentration profiles for all pixels using Eq. 10. The estimated
concentration profiles are then used in Eq. 3 to estimate the
pure-component spectra, S, which are subsequently used to
formulate Ustack as shown in Eqs. 13 and 17. Ustack is used in
Eq. 21 to solve for the initial concentrations. The updated
estimates for initial concentrations are used in Eq. 10 to
construct time-dependent concentration profiles for each pixel.
These updated concentration profiles are used in Eq. 3 to obtain
new updated pure-component spectral estimates. The estimated
pure-component spectra are normalized to unit length, and the
corresponding concentration profiles are scaled by the
reciprocal of the normalization constant prior the nonlinear
optimization step. The nonlinear parameters, i.e., first-order
rate constants, are subsequently estimated by the simplex
optimization method39 ‘‘fminsearch’’ from the Matlabt opti-
mization toolbox to minimize Eq. 4. The simplex optimization
method was used in this case since it tended to converge
smoothly over a wider range of initial estimates compared to
other nonlinear least squares methods tested.

EXPERIMENTAL

Data Synthesis and Acquisition. Simulated Data. Several
simulated data sets were formulated to mimic photobleaching
experiments in order to test and compare the performance of
the above-mentioned algorithms under ideal conditions. Each
simulated data set contained two initial species, A and C,
which followed simple first-order decays producing products
B and D, respectively. Six different data sets were formulated

using different combinations of pure spectra, rate constants,
and numbers of pixels. The properties of these simulated data
sets were varied to test the algorithms over a variety of
conditions including extreme conditions of either identical
spectra or identical rate constants. The number of pixels
processed was either 5 or 500. The pure-component spectra
were either identical or were overlapped with a correlation
coefficient of 0.7, and the rate constants, k1 and k2, either
differed by a factor of two or were identical. The extreme
conditions included in these simulated data sets were chosen
to illustrate the capability of the DNL and SLS methods to
resolve systems with identical rate constants or identical pure-
component spectra as long as the relative concentrations of
each specie differed between two or more pixels analyzed.
The individual properties of each simulated data set are noted
in Table II. Time-dependent concentration profiles sampled at
18 equally spaced time intervals of 0.24 ms (integration time
for each experimental pixel in the image) were constructed
for each pixel using the rate constants specified in Table II
and random initial concentrations of A and C. Simulated
pure-component fluorescence spectra spanning the range of
450–700 nm at 0.5 nm increments were formulated by
combining Gaussian curves to produce overlapping spectral
profiles with the desired correlation coefficient. The simulated
pure-component spectra are shown in Fig. 2. The inner
product of the desired concentration profiles and pure-
component spectra produced the simulated spectral data sets.
Poisson noise typical of fluorescence measurements was also
added to the data using a pseudo-random Poisson noise
generator.40

Hyperspectral Bead Data. A temporal hyperspectral
fluorescence image of several fluorescently labeled glass beads
immobilized in a polymer matrix of polydimethylsiloxane was
acquired. The fluorescently labeled beads were prepared by
coupling fluorescently labeled streptavidin proteins to func-
tionalized silica microspheres. More details on the bead
preparation are available elsewhere.41 The temporal image of
18 equally spaced time intervals was collected using a
hyperspectral confocal microscope developed at Sandia
National Laboratories with an oil immersion 603, NA 1.4
Plan Apochromat objective (Nikon) giving a spatial resolution
of 250 nm in the x and y spatial dimensions.1

The image was masked to contain pixels from only two
fluorescent beads in order to produce a simplified image. This
simplified image included a total of 471 spatial pixels. The goal
in reducing the full image to this more simplified image was to
provide an experimental data set with a relatively simple first-
order photobleaching decay mechanism, which could then be
used as a reference for comparing different modeling
algorithms applied to an experimental spectral image. The
DNL algorithm is limited in the number of pixels that it can
analyze because of the computational effort required to
estimate large numbers of nonlinear parameters. Therefore, in
order to perform DNL fitting on the two-bead image, the image
was compressed into five spatially averaged super pixels. The
regions averaged for each super pixel and a representative
spectrum of each super pixel are included in Figs. 3a and 3b,
respectively. Comparisons of raw and super pixels from bead 1
(left bead) and bead 2 (right bead) are included in Figs. 3c and
3d, respectively. There are advantages and disadvantages to
analyzing an image compressed by this broad averaging
method. Advantages include noise reduction and decreased

TABLE II. Description of different parameters used to formulate
simulated data sets.

Data set
Spectral correlation

coefficient

Rate constants
Number
of pixelsk1 k2

a 1 0.1 0.2 5
b 1 0.1 0.2 500
c 0.7 0.1 0.2 5
d 0.7 0.1 0.2 500
e 0.7 0.5 0.5 5
f 0.7 0.5 0.5 500
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computation time, while a key disadvantage is the possible loss
of unique spectral variance due to averaging. The pure-
component spectra for such a spatially separated system were
readily inferred from the individual beads. All pixels in each
spatially separated bead were averaged together to obtain an
expected pure-component spectrum for each bead.

Data Analysis. Random numbers were used to initialize the

modeling of all simulated temporally resolved spectral images

and the experimental spectral images obtained during photo-

bleaching of the fluorophore-tagged beads. The DNL and SLS

algorithms were initialized using a random number generator

for the initial estimates of the rate constants and concentra-

tions at t0 (i.e., initial concentrations). When analyzing

simulated data, these algorithms were started at ten different

random initializations in order to investigate their conver-

gence properties. The MCR soft-modeling algorithm was

initialized using a random number generator for initial

estimates of the pure-component spectra. The results from

the MCR algorithm were used to initialize the hard/soft-

modeling algorithm, and thus computational times required

for the soft-modeling are included in the reported hard/soft-

modeling analysis time. For all algorithms, non-negativity

constraints were imposed on all estimated concentration

profiles and pure-component spectra.

Nonlinear solvers such as partial derivative and simplex

based methods used in the hard-modeling algorithms are prone

to converging to local minima. In order to assure that the hard-

modeling algorithms converged completely, the nonlinear

least squares optimization routines were restarted until the

change in the percent variance explained for consecutive

restarts was less than 1 3 10�6. The percent variance explained

FIG. 2. Simulated fluorescence spectra with correlation coefficient of 0.7.

FIG. 3. Experimental bead data. (a) Regions averaged into super pixels. (b) The initial spectrum of each super pixel. (c, d) Raw spectra compared to super pixel
spectra of super pixels 1 and 5, respectively.
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is shown in Eq. 22:

% Variance Explained ¼ 100 3

X

i; j

d̂2
i; j

X

i; j

d2
i; j

ð22Þ

where di,j is an element of the original data set of augmented

temporally resolved pixels as shown in Fig. 1a and d̂i,j is an
element of that data set reconstructed from the modeling
results.

All MCR analyses were performed using principal compo-
nent analysis (PCA) truncated data as recommended in the
original work10 and terminated when the change in percent
variance explained for two consecutive iterations was less than
1 3 10�6. In order to obtain kinetic rate constants from the soft-
modeling results, kinetic concentration profiles were fit to the
resultant MCR concentration profiles. All analysis times
reported for soft modeling include the time required to fit the
kinetic model to the soft-modeled concentration profile.
Convergence was considered complete for all hard/soft-
modeling analyses when the change in percent variance
explained for two consecutive iterations was less than 1 3

10�3. Differences in the convergence criteria for soft-modeling
and hard/soft-modeling are discussed later.

Strict hard-modeling algorithms are often restricted in the
number of parameters that can be estimated simultaneously. In
a two-component system with 500 pixels, there are 1000 initial
concentrations and two rate constants to be estimated. Using
the DNL algorithm, all 1002 parameters are estimated
simultaneously with a nonlinear solver. The nonlinear solver
utilized in the algorithm is not able to estimate such a large
number of parameters efficiently; therefore, only the five pixel
simulated data sets and experimental data sets with a limited
numbers of super pixels were analyzed with the DNL
algorithm. Attempts to use the DNL method on 500 pixels
resulted in out-of-memory errors when attempting to compute
the Hessian matrix (using lsqnonlin solver) on a Windows XP/
PC with 4Gb of RAM. It is theoretically possible to use the
DNL method with a simplex method (fminsearch), but all
attempts failed to converge or were stopped due to extensive
computation times (days). Since the SLS algorithm separates
the inherently linear parameters (initial concentrations) and
inherently nonlinear parameters (rate constants), it is only
necessary to estimate two parameters with the nonlinear solver,
which improves the algorithm’s speed and allows it to be used
on much larger data sets.

When super pixels were analyzed with the modeling
algorithms, the full image was extrapolated from the space
spanned by the modeling results in order to obtain the
concentration estimates for every pixel in the image. This
extrapolation step differs slightly depending on the algorithm
used in the analysis. For soft-modeling, the extrapolation was
performed by a simple nonnegative least squares step that
estimated temporal concentration profiles for all of the
individual pixels in the full image. For the DNL, SLS, and
MCR hard/soft-modeling algorithms, the pure-component
spectra and rate constants from the kinetic modeling of the
super pixels were used to determine temporal concentration
profiles for each pixel in the full image. The concentrations
extrapolated to the full image were used to compute figures of

merit. The time required to extrapolate the fitting results back
to the full image is included in the analysis time.

Figures of Merit. Several figures of merit were calculated to
compare fitting results from the different algorithms. Some
figures of merit are only applicable to the modeling of
simulated data sets where the true values of the estimated
parameters are known, whereas others are applicable to the
modeling of the experimental bead data as well. The percent
error in the estimated rate constants and mean average
deviation of the estimated initial concentrations are used to
characterize the quality of model fit to simulated data sets. The
equation for the percent error in the estimated rate constants is
shown in Eq. 23:

rate constant ð% errorÞ ¼ 100 3
k � k̂

k
ð23Þ

where k is the actual rate constant and k̂ is the estimated rate
constant. The equation for the mean average deviation (MAD)
in the estimated concentrations at t0 is given in Eq. 24:

mean average deviation ¼

Xp

i¼1

jci � ĉij

p
ð24Þ

where ci is the actual concentration at t0 for pixel i for a given
specie, ĉi is the corresponding estimated initial concentration,
and p is the number of pixels included in the modeling.

The lack of fit (LOF) in the pure-component spectra is used
to show the accuracy of the model-estimated spectra compared
to the actual or expected values. The formula for the spectral
lack of fit is presented in Eq. 25:

spectral lack of fit ð%Þ ¼ 100 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

ðsj � ŝjÞ2

Xn

j¼1

s2
j

vuuuuuuut
ð25Þ

where sj is the actual or expected pure-component spectrum at
wavelength j, ŝj is the estimated pure-component spectrum, and
n is the number of spectral wavelengths included in the
modeling.

The root mean squared error (RMSE) is used as a figure of
merit to evaluate the overall quality of a fit. This value is
computed as shown in Eq. 26:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

ðdi;j � d̂i;jÞ2

nrowsncols

vuuut ð26Þ

where di,j is an element of the original spectral data set of
stacked pixel data measured over time as shown in Fig. 1a, d̂i,j

is the element in the ith row and jth column of the data set
reconstructed from the modeling results, nrows is the number of
rows (number of pixels times number of time points) in the data
set, and ncols is the number of columns (spectral wavelengths)
in the data set. Two values are presented for the RMSE for
simulated data with Poisson noise added. The ‘‘Model
Estimated’’ is calculated as described above, and the ‘‘Actual’’
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column is calculated by substituting the noise free simulated
data for d̂i,j in Eq. 19.

RESULTS AND DISCUSSION

Kinetic Modeling of Simulated Data. When modeling
multivariate data with methods based on first principles models
like SLS and DNL, it is possible to fit a wide range of different
mechanisms; thus, it is important to have the ability to discern
between several different plausible models. This ability to
distinguish between models was tested during the develop-
mental phase of the DNL algorithm where the DNL approach
was applied to simulated spectral image data similar to that
presented here. For example, it is possible to fit models such as
2A !k1 B and 2C !k2 D using the DNL method. It is beyond the
scope of this work to show the exhaustive sets of results that
were obtained with numerous different models; however, it
should be sufficient to note that in all cases the most
parsimonious and statistically sufficient models were those
corresponding to the true simulated models. For this reason,
only the two-component first-order decay results are discussed
here. The SLS algorithm is limited in its ability to test different
models since it is only applicable to models containing
inherently linear and nonlinear parameters that can be
separated.

Kinetic Modeling of Noise-Free Simulated Data. The
simulated data sets with and without added Poisson noise were
analyzed with the hard-modeling, soft-modeling, and hard/soft-
modeling algorithms. The noise-free simulated data sets were
analyzed in order to test each algorithm on ideal data. The
kinetic modeling results and associated figures of merit for the
noise-free data sets are shown in Table III. The DNL results for
data sets b, d, and f (data sets with 500 pixels each) are omitted
in Table III because of ‘‘out of memory errors’’. It was
previously noted that the DNL algorithm performed poorly in
these kinds of situations, and it was this poor performance that
provided the initial motivation to pursue the development of
the alternate SLS algorithm. The soft-modeling and hard/soft-
modeling results for data sets a and b are omitted in Table III
because the algorithm produced rank deficiency errors when
computing the matrix inverse of ST due to identical pure-
component spectra of constituents A and C. Inspecting the
figures of merit noted in Table III, it is apparent that the hard-
modeling and hard/soft-modeling algorithms yield significantly
better results than the soft-modeling algorithm. The DNL and
SLS hard-modeling algorithms perform slightly better than the
hard/soft-modeling algorithm. The DNL algorithm performed
much more slowly than the other algorithms, whereas the SLS
algorithm had the fastest analysis times.

The DNL and SLS algorithms were randomly initialized 10
times. It is well known that the convergence of many nonlinear
fitting problems can be heavily dependent on the quality of the
starting values; thus, the number of trials that successfully
converged using random starting values is shown in Table III
as a rough indicator of the convergence properties and
robustness of the method. In some cases, very poor initial
guesses of the parameters can lead to negative estimates of
initial concentrations, which are in turn forced to zero by the
non-negativity constraints, resulting in rank deficiency in
Ustack. Due to the extreme cases tested with noise-free data
(i.e., identical pure-component spectra or identical rate
constants) a number of pathological cases (convergence
failures) were observed and are noted in Table III. The result

of the first random initialization to converge is presented in
Table III. All random initializations of the DNL algorithm for
data sets a and c yielded reasonable parameter estimates similar
to the known true values (e.g., similar rate constants, initial
concentrations, pure-component spectra, and RMSE). For data
sets a through d, the SLS algorithm either converged to results
with consistent figures of merit similar to truth or exited
immediately due to a rank deficiency in Ustack when solving for
the initial concentrations (see Eq. 21). For the hard-modeling
analyses of data sets e and f, the same convergence trends were
observed as in data sets a through d except for a higher MAD
for initial concentrations and larger lack of fit in the pure-
component spectra. These poorer results are due to the identical
rate constants in data sets e and f, and they indicate that there is
insufficient selectivity in these particular simulated data sets to
fully resolve both species.

As stated previously, the noise-free data sets with identical
spectra (data sets a and b) could not be modeled using the soft-
modeling or hard/soft-modeling algorithms because the
spectral matrix is rank deficient. The SLS algorithm is able
to overcome this rank deficiency due to Eq. 13 in which the
pure-component spectra are combined with the set of basis
functions describing the concentration profiles. The spectral
matrix is not inverted in either the SLS or DNL algorithms;
therefore, they are unaffected by a rank deficient spectral
matrix.

The convergence criteria initially used for the hard/soft-
modeling of noise-free simulated data was a 1 3 10�6 change in
percent variance explained. When this convergence criteria was
used, over-fitting was often observed, which resulted in
divergence from the minimum RMSE. Inspection of interme-
diate results during the operation of this algorithm revealed that
use of direct substitution of the kinetic concentration profiles
caused this divergent behavior. When the convergence criterion
was changed to 1 3 10�3 change in percent variance explained,
the algorithm yielded reasonable parameter estimates similar to
the known true values as shown in Table III.

Kinetic Modeling of Simulated Data with Added Poisson
Noise. Modeling of noise-free data demonstrates how the
algorithms perform in ideal cases. Table IV, which presents the
results of modeling of simulated data with added Poisson noise,
is critical for understanding how these algorithms perform
under more realistic circumstances. Comparison of the model-
estimated RMSE with the actual RMSE reveals excellent
results in all cases but one.

The hard-modeling algorithms were randomly initialized ten
times. All random initializations of the DNL algorithm behaved
similar to the noise-free data. The rank deficiency affecting the
SLS algorithm in the noise-free data was less prevalent in the
noisy data because the Poisson noise helps to break the rank
deficiency when very poor initial estimates are used. As with
the noise-free simulated data, the first random initialization to
converge is reported in Table IV and the number of trials that
successfully converged is shown in the last column.

Several trends are apparent from the hard-modeling results
shown in Table IV. The DNL and SLS algorithms yield
comparable results, but the SLS algorithm is at least ten times
faster in all instances and is able to analyze much larger data
sets. It is clear that when using SLS, the analysis of the larger
data sets (500 pixels versus 5 pixels) yielded significantly better
fitting results. Similar improvements in the results with the
larger data sets were not found for the MCR soft-modeling or
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hard/soft modeling methods. In comparing the MCR soft-
modeling and hard/soft-modeling results, the implementation of
the kinetic constraints improved the fitting results in most cases.
For both MCR soft-modeling and hard/soft-modeling, inaccu-
rate results were obtained for data sets with identical pure
spectra (data sets a and b) because of rank deficiencies in the
spectral matrix. Also, an improvement in the spectral lack of fit
was not observed as the number of pixels analyzed increases.

The SLS modeling algorithm was generally comparable to
the MCR hard/soft-modeling algorithms when comparing the
metric of percent error in the rate constants. The SLS algorithm
often outperformed the MCR hard/soft-modeling algorithm in
the MAD of initial concentrations and the spectral lack of fit
metrics. The analysis times were mostly comparable for the 5
pixel data sets, but exhibited a large advantage in two of the
three analyses with the 500 pixels.

Analysis of Experimental Temporal Hyperspectral
Fluorescence Bead Data. The results from the temporal
hyperspectral bead data analyzed with the DNL, SLS, soft-
modeling, and hard/soft-modeling algorithms, are presented in
Table V. The two beads were assumed to each contain a
different single fluorescence component and were spatially
resolved in the image. Thus, the true pure-component spectrum

of each fluorophore could be estimated from the average
spectrum of each bead. These estimated pure spectra were then
used for estimating the spectral lack of fit for the model-
estimated spectra presented in Table V. The data set denoted as
‘‘Avg’’ is the set of five super pixels, and the data set denoted as
‘‘Raw’’ is the entire two-bead image (471 selected spatial
pixels). The first-order kinetic model and several different two-
component second-order decay mechanisms were fit to the
super pixels using the DNL algorithm. The two-component
first-order decay mechanism is the most parsimonious and
statistically sufficient mechanism for the two-bead image;
therefore, only the results from analyses using this mechanism
are presented.

As in the kinetic modeling of the simulated data, the SLS
and DNL results are in good agreement. Similar rate constants
are obtained from the soft-modeling and hard/soft-modeling
results, but the spectral lack of fit for bead 2 is somewhat
greater than expected based on the results obtained from the
DNL and SLS hard-model analyses when the rate constants
differ by a factor of 2. These results do not follow the trends
observed in the simulated data.

The observed differences in the trends in spectral lack of fit
between the experimental and simulated data led to additional

TABLE III. Results from kinetic modeling of noise-free simulated data.

Data set Rate constants (% error)

Initial concentration (t0)

Spectra (% LOF)

RMSE

Analysis time (s) Number of trials convergedMean MAD Actual Model estimated

DNL
a 1.0 393.4 8.3 0.0 0.00 0.00 1547 2

0.5 480.0 8.3 0.0
c �0.1 393.4 0.8 0.0 0.00 0.00 2333 1

0.0 480.0 0.8 0.0
e 0.0 393.4 107.8 6.6 0.00 0.00 1079 6

0.0 480.0 108.6 6.1
SLS

aa 0.0 393.4 0.6 0.0 0.00 0.00 1 9
0.1 480.0 0.6 0.0

ba 0.0 349.2 0.2 0.0 0.00 0.00 45 10
0.1 335.2 0.3 0.0

c �0.1 393.4 1.4 0.1 0.00 0.00 4 7
�0.1 480.0 1.4 0.1

d 0.0 349.2 0.0 0.0 0.00 0.00 365 5
0.0 335.2 0.0 0.0

e 0.0 393.4 102.8 6.3 0.00 0.00 1 5
0.0 480.0 103.5 5.8

f 0.0 349.2 35.5 0.1 0.00 0.00 221 4
0.0 335.2 30.3 5.8

MCR
c �1.4 393.4 91.0 19.6 0.00 0.03 6 NA

10.4 480.0 113.3 0.9
d 0.6 349.2 90.3 19.5 0.00 0.03 610 NA

11.9 335.2 107.7 0.6
e 0.0 393.4 81.9 20.0 0.00 0.02 5 NA

0.0 480.0 107.3 2.0
f 0.0 349.2 82.8 19.0 0.00 0.02 623 NA

0.0 335.2 101.0 0.5
MCR hard/soft

c �3.9 393.4 19.2 5.1 0.00 0.23 9 NA
3.7 480.0 25.3 2.4

d 1.9 349.2 34.5 4.3 0.00 0.11 955 NA
3.6 335.2 37.0 1.3

e 0.0 393.4 81.9 19.9 0.00 0.02 5 NA
0.0 480.0 107.1 2.0

f 0.0 349.2 82.7 18.9 0.00 0.02 668 NA
0.0 335.2 100.8 0.5

a With identical spectra and noise free data, non-negativity had to be turned off for the estimation of concentrations at t0.
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evaluations of the experimental data. Upon further investiga-
tion with both PCA and the kinetic modeling of each bead
separately, we found evidence of a second very weak
fluorophore in bead 2 (bead to the lower right in Fig. 3a) that
has an emission spectrum similar to the fluorophore in bead 1.
The presence of a second fluorophore in bead 2 could either be
due to experimental contamination of bead 2 or more likely due
to a small amount of spectral bleed-through of emission from
another bead above or below bead 2. Therefore, our
presumption that the average spectrum from bead 2 represents
the pure spectrum of the fluorophore is not completely
accurate. Thus, we have some unknown amount of error in
the pure spectrum of bead 2, and our spectral lack of fit metric
for this fluorophore cannot be considered accurate in Table V.
The spectral lack of fit metric should be valid for the
fluorophore in bead 1, and the trends in the experimental data
for this bead are consistent with those of the simulated data.

This experimental example points out the need to always
validate the assumptions in the experimental data through a
careful examination and analysis of the data. Although this
supposedly simplistic two-bead image does not allow a full
evaluation and comparison of the different modeling approach-
es, it does help to demonstrate the use of the SLS and DNL
approaches in comparison with soft and hard/soft models
applied to real experimental temporally resolved hyperspectral
fluorescence image data.

CONCLUSION

Fitting of temporally resolved hyperspectral fluorescence
images by kinetic modeling offers greater accuracy and
precision compared to soft-modeling and hard/soft-modeling
as shown in Tables III, IV, and V. We have found that the SLS
algorithm offers significant advantages over the DNL method

TABLE IV. Results from the kinetic modeling of simulated data with noise added.

Data set Rate constants (% error)

Initial concentration (t0)

Spectra (% LOF)

RMSE

Analysis time (s) Number of trials convergedMean MAD Actual Model estimated

DNL
a 50.9 393.4 76.9 8.8 4.76 4.69 366 2

�28.1 480.0 83.2 9.1
c �13.4 393.4 85.9 6.7 4.74 4.69 357 1

�3.9 480.0 86.1 6.6
e �0.6 393.4 110.4 9.0 3.63 3.56 252 6

1.1 480.0 109.4 9.8
SLS

aa 24.5 393.4 130.2 6.6 4.76 4.69 4 9
�47.6 480.0 123.5 12.2

ba 1.9 349.2 11.7 0.5 4.21 4.21 53 10
�1.0 335.2 13.8 0.6

c �9.5 393.4 49.4 5.3 4.74 4.69 4 7
�1.7 480.0 49.0 5.3

d 0.1 349.2 2.6 0.5 4.22 4.22 284 5
�0.2 335.2 3.3 0.6

e �0.9 393.4 40.2 9.0 3.63 3.56 20 5
0.9 480.0 36.7 7.7

f 0.1 349.2 30.5 1.1 3.20 3.20 367 4
�0.1 335.2 25.0 5.7

MCR
a �20.9 393.4 129.0 29.1 4.76 4.63 3 NA

7.0 480.0 130.1 29.5
b �46.4 349.2 111.7 29.1 4.21 4.19 252 NA

26.8 335.2 111.4 29.3
c �7.6 393.4 71.4 14.6 4.74 4.67 7 NA

10.6 480.0 80.5 4.5
d �3.3 349.2 70.6 19.1 4.22 4.21 540 NA

11.8 335.2 91.0 2.6
e �1.1 393.4 44.0 12.9 3.63 3.55 6 NA

0.3 480.0 55.5 6.4
f 0.5 349.2 59.0 19.5 3.20 3.19 283 NA

�0.5 335.2 82.7 5.5
MCR hard/soft

a �33.7 393.4 159.6 19.8 4.76 4.79 4 NA
12.1 480.0 162.4 21.9

b �312.6 349.2 327.1 0.4 4.21 10.30 3678 NA
�98.5 335.2 327.0 0.4

c �1.9 393.4 49.2 5.1 4.74 4.71 8 NA
4.1 480.0 40.0 5.5

d �6.7 349.2 22.2 4.2 4.22 4.24 802 NA
3.6 335.2 20.1 5.6

e �1.1 393.4 44.9 11.6 3.63 3.57 7 NA
0.3 480.0 53.3 6.1

f 0.5 349.2 59.8 19.2 3.20 3.21 319 NA
�0.5 335.2 82.9 5.1

a Non-negativity turned off for the estimation of concentrations at t0 for comparison with Table III.
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since SLS is much faster and it is not as limited in the number of
pixels that can be analyzed simultaneously. On the other hand,
DNL has the advantage that it can be applied to higher order
kinetic models. We also demonstrated that simultaneous fitting
of a single kinetic model to many image pixels reduces
ambiguity in the estimated parameters, reduces the impact of
measurement noise, and allows more reliable fitting of complex
models with a combination of many linear parameters
(concentration at t0) and a few nonlinear parameters (rate
constants). The two major challenges of fitting kinetic models to
temporally resolved hyperspectral images (estimating concen-
trations at t0 and large number of pixels) can be effectively
overcome by the use of the SLS method as shown in this paper.
Although only applicable to first-order decay such as photo-
bleaching experiments, these kinds of experiments represent a
major application area of temporally resolved hyperspectral
images and thus represent a significant technological advance.

The aim of future work is to apply the SLS method in
obtaining kinetic information (rate constants) for temporally
resolved hyperspectral images of real biological samples, with
the long-term goal of correcting the effects of photobleaching
in hyperspectral images with three spatial dimensions.
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