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With projection based calibration approaches, such as partial least squares (PLS) and principal component regres-
sion (PCR), the calibration space is spanned by respective basis vectors (latent vectors). Up to rank k basis vectors
are formed where k ≤min(m,n) with m and n denoting the number of calibration samples and measured variables.
The user needs to decide how many and which respective basis vectors (tuning parameters). To avoid the second
issue, basis vectors are selected top-down starting with the first and sequentially adding until model criteria are sat-
isfied. Ridge regression (RR) avoids the issues by using the full set of basis vectors. Another approach is to select a
subset from the total available. The presented work develops a process based on the L1 vector norm to select basis
vectors. Specifically, the L1 norm is used to select singular value decomposition (SVD) basis set vectors for PCR
(LPCR). Because PCR, PLS, RR, and others can be expressed as linear combination of the SVD basis vectors, the focus
is on selection and comparison using the SVD basis set. Results based on respective tuning parameter selections and
weights applied to the SVD basis vectors for LPCR, top-down PCR, correlation PCR (CPCR), PLS, and RR are compared
for calibration and calibration updating using spectroscopic data sets. The methods are found to predict equiva-
lently. In particular, the L1 norm produces similar results to those obtained by the well-studied CPCR process. Thus,
the new method provides a different theoretical framework than CPCR for selecting basis vectors. Copyright © 2016
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In analytical chemistry, developing a mathematical relationship
between chemical and/or physical variables (analytes) and mea-
sured spectra is common [1–3]. The typical linear mathematical
relationship for multivariate calibration is

y ¼ Xbþ e (1)

where y denotes an m×1 vector of quantitative reference ana-
lyte information for m calibration samples, X symbolizes the
m× nmatrix of respective spectra measured over n wavelengths,
b represents an n×1 model vector, and e signifies them×1 vec-
tor of normally distributed errors with mean zero and covariance
matrix σ2I with I being them×m identity matrix. Multivariate cal-

ibration seeks to estimate b, by b̂¼ Xþy where X+ is a general-
ized inverse of X.
Different methods are used to form a generalized inverse.

Three approaches are partial least squares (PLS), principal
component regression (PCR), and ridge regression (RR) [1–3].
The methods can be used in full wavelength mode (no wave-
length selection is required), but other tuning parameters must
be ascertained. Tuning parameters for PLS and PCR are the
number of respective basis vectors. Other terms for basis vectors
are latent vectors or variables (LVs) or principal components
(PCs). The role of the tuning parameter value for PCR and PLS
is to reduce the dimensionality of the calibration space, and as
a result, shrink the regression vector relative to using the full

space, i.e. the model vector 2-norm (L2 norm) b̂
��� ���

2
increases as

the number of basis vectors included increases. For RR, the
tuning parameter is the ridge value that also controls how much
of the calibration space is used and results in a shrunken regres-
sion vector.

In all three methods, the tuning parameters adjust the model
vector direction and magnitude balancing the underlying model
selectivity/sensitivity tradeoff and hence, the bias/variance tradeoff
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[4]. Specifically, the inverse of the model vector L2 norm is a
measure of the model sensitivity [5,6] and is adjusted as the
tuning parameters change with a tradeoff to the model vector
selectivity. As the model vector model vector L2 norm in-
creases, the potential for greater prediction variance also in-
creases while the prediction error for the calibration samples
decreases (less bias).

The methods of PCR and PLS use different basis sets to span
the calibration space. Up to rank k respective basis vectors are
formed to span the complete calibration space including the
noise where k ≤min(m,n). Once the k respective basis vectors
have been formed, the user needs to decide how many and
which ones to form the final projection based model. To avoid
the second issue for PLS and PCR, basis vectors are selected in
a top-down manner starting with the first basis vector formed
and sequentially adding more until acceptable values for mea-
sures of model quality are attained. For the method of PCR, this
is sometimes referred to as top-down PCR.

For PCR, studies have been performedwhere a subset from the k
PCR basis vectors, not necessarily in the top-down order, have
been selected [7–15]. A well-studied approach selects the basis
vectors based on the correlations to the prediction property and
is termed correlation PCR (CPCR) [12–15].

A variant of Tikhonov regularization (TR) [16] accomplishes
variable selection by using an L1 norm penalty on the model
vector ( bk k1 ) instead of the L2 norm as with RR [1,17–22]. This
variable selection variant of TR is commonly referred to as least
absolute shrinkage and selection operator (LASSO) [21]. Pre-
sented in this paper is a TR process using the L1 to select PCR
basis vectors best balancing the bias/variance tradeoff thereby
potentially reducing prediction errors. The method is referred
to as LASSO PCR (LPCR). Using several measures of model quality
and spectroscopic data sets, LPCR is compared to PCR, CPCR,
PLS, and RR. Subset selection with the L1 norm should not be
confused with other methods that have sparsified regression
methods such as PCR and PLS [23–27]. In these situations, the
intent is to create sparse basis vectors such that when used, a
sparse regression vector is formed that is essentially variable
(wavelength) selected. For the data sets studied in this paper,
the intent is to be full wavelength based, but the sparseness is
in which non-sequential PCR basis vectors are used.

The regression vectors for PCR, PLS, and RR can be expressed as
linear combinations of theV singular vectors of X from the singular
value decomposition (SVD) of X (X=UΣVT) [2,3,28–35]. These SVD
basis vectors are also the PCR basis vectors. By using a common
basis set to express model vectors, similarities and differences be-
tween the various methods can be observed. The respective
model weight values for the common basis set indicate when a
model vector will be shrunken or expanded relative to another
model vector. Also evaluated in this paper are the SVD basis vector
weights for the LPCR, PCR, CPCR, PLS, and RR model vectors.

A significant problem in multivariate calibration using spectro-
scopic data is the changing measurement conditions (secondary
conditions) from when the calibration samples were measured
(primary conditions) and the model was formed. Thus, methods
have been and continue to be developed to update a model
formulated in the original primary conditions to now predict
new samples measured in the secondary conditions [36]. While
other processes have been developed, model updating is the
method studied in this paper. Specifically, a hybrid of LPCR
for calibration with a TR model updating method [22]. Results

are compared with CPCR, PCR, PLS, and RR as adapted for
calibration updating.

2. THEORY

Because all the methods presented in this paper require tuning
parameter selection, a brief discussion is first presented on the
tuning parameter selection process for this study. This discussion
is followed by descriptions of the new calibration processes.

2.1. Selecting final tuning parameter values and assessing
effective rank (ER)

Numerous approaches exist to determine tuning parameter
values, e.g. the number of respective basis vectors for PCR and
PLS, or the ridge value for RR [37–46]. Typically, a single criterion
is used based on some sort of cross-validation (CV) procedure
such as leave-one-out CV (LOOCV) or leave multiple out CV
(LMOCV) to compute the root mean square error of CV (RMSECV)
values. Another approach implemented in this study incorpo-
rates graphical analysis of multiple model quality measures as a
tuning parameter varies. Typically, a model quality measure of
prediction error (such as RMSECV or the RMSE of calibration
RMSEC) or model fit (such as R2) are plotted against a measure
of model complexity (such as the model vector magnitude mea-
sured by the L2 vector norm or 2-norm) [44–46]. When RMSEC is
used, the plotted curves are L-shaped, and the graphical analysis
is termed the L-curve method [47,48]. The tuning parameters
forming models with the better bias/variance tradeoff are in
the corner region of the L-curve. Such L-curve related plots are
evaluated in this paper and used to select tuning parameters
for all the calibration processes.
Another model diagnostic measure to distinguish the de-

gree of model complexity is the ER or effective degrees of
freedom [8,48–54]. One computational approach for ER,
termed the generalized degrees of freedom (GDF), uses a
Monte Carlo method [54]. The GDF algorithm for the ER used
in this paper first adds normally distributed noise (δ) to each
sample in vector y N times, obtaining respective N vectors of
ŷ from the tuning parameter specific models formed using
the corresponding perturbed calibration y. Next the linear
regression slope ωi for the ith sample is obtained for the
equation ŷi ¼ ρþ ωiδij for j = 1,…,N with intercept ρ. The ER
for the particular tuning parameter is then computed by

ER ¼
Xm

i¼1
ωi for the m samples in y. While the method re-

quires a value for δi, practical experiences shows that ER
values are generally invariant to the actual value, i.e. a large
range of values produces the same results. The ER provides
another measure of model complexity for an impartial graph-
ical comparison between calibration methods.
The statistical significance of basis vectors as it is entered into

the model can be assessed using a randomization test [37] as
well as other statistical testing processes [7,8,14]. These pro-
cesses were not evaluated for any of the calibration methods. In-
stead, measures of model quality are tracked.

2.2. Singular vector basis set and model vector basis
weights (β)

The approach of PCR is to estimate the regression vector b by
only including the top d basis vectors pertinent to modeling
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the analyte from the rank k available using the SVD of X. The k
singular vectors are those sorted from the largest singular value
to the smallest with each singular value (and vector) capturing
sequentially decreasing variance (information) from X. Said
another way, PCR estimates b by minimizing the least-squares
criterion Xdb� yk k2 where Xd denotes X projected onto d basis
vectors and ·k k2represents the L2 vector 2-norm.
A relationship often used to express computation of the PCR

model vector based on d basis vectors is

b̂¼ Xþy

¼ VdΣ�1
d UT

d

� �
y

¼
Xd
i¼1

uT
i y

σi
vi

¼
Xk
i¼1

βivi

¼ Vβ

(2)

where the subscript d is left off of b̂ and βi denotes a scalar
value for the weight given to a particular singular vector, i.e.
the top d vectors have non-zero weights and the k - d
weights are zero. More generally, all of the LPCR, CPCR,
PCR, PLS, and RR regression vectors can be expressed by

b̂¼
Xk
i¼1

βivi

¼ Vβ:

(3)

As with PCR, the CPCR or LPCR methods have non-zero
weights for those vi vectors being used and zero for the others,
i.e. the singular vectors with zero weights span the null spaces
of XT. The PLS and PCR weight values for all k singular vectors de-
pend on respective tuning parameter values. There is nothing
particular about the V basis set and model regression vectors
can be expressed as a linear combination of other basis set ex-
pansions [34 and references therein, 55].
An alternative to Equation (3) to characterize LPCR, CPCR,

TPCR, PLS, and RR that ultimately reduces to Equation (3) is

b̂¼ VFΣ�1UTy

¼ ∑
k

i
fi
uT
i y

σ i
vi

¼ Vβ

(4)

where F signifies a k × k diagonal matrix of fi filter values
[47,53]. For LPCR, CPCR, and PCR, fi = 1 for the vi singular
vectors retained and zero for the rest. For RR and PLS, the
respective filter value ranges for all k vectors are 0 ≤ fi ≤ 1
and 0 ≤ fi ≤∞. Equation (4) expresses an alternative to character-
ize differences between calibration methods by inspecting filter
values. Only the weight values for β are evaluated in this paper.

2.3. TR with the L1 norm for singular vector selection; LPCR

The LPCR method is a variant of the TR method commonly known
as LASSO. For RR, the L2 norm penalty is used on the regression
vector in the minimization expression min Xb� yk k22 þ λ2 bk k22

� �
where λ denotes the RR tuning parameter. With LASSO, the L1
vector norm (1-norm) penalty is used on the regression vector

forming the minimization expression min Xb� yk k22 þ τ bk k1
� �

where τ represents the LASSO tuning parameter and ·k k1signifies
the L1 norm. By using the L1 norm, variables (wavelengths with
spectral data) are selected to form sparse models. Instead of
selecting wavelengths, TR is modified to select singular vectors
from the SVD of X. The minimization expression for LPCR is

min Uα� yk k22 þ τ αk k1
� �

(5)

where α symbolizes the k×1 model vector with non-zero coeffi-
cients for those basis vectors being selected and essentially zero
for the remaining coefficients as with a wavelength selected
LASSOmodel vectorb. The terms in expression (5) stem fromusing
the SVD on X and rewriting Equation (1) as y=UΣVTb. Terms are
combined to form y=U(ΣVTb) =Uα. An estimated singular
vector basis set selected model vector solution α̂ from expres-

sion (5) can be converted to a full wavelength model by b̂¼
VΣ�1α̂ and then used for prediction in the usual way.

In this paper, the process for L1 norm basis set selection first
obtains the model number (τ) at the minimum of the mean
RMSECV across LMOCV using a LASSO algorithm with Expression
(5). At this model number, the absolute model vector coefficient
values in the mean model vector α̂ for the selected basis vectors
from U across the LMOCVs are sorted from largest to smallest.
The method of PCR is then used step-wise with these L1 selected
basis vectors sequentially added to form the LPCR model vectors
and L-curve based graphical diagnostics.

2.4. PCR singular vector selection based on correlation;
CPCR

For CPCR, the SVD singular vectors are ordered by decreas-
ing absolute correlations between each ui vector and y.
The absolute correlation avoids negative correlations from
mean centering (if used). Statistical testing or a threshold
value on the correlation can be used [7–9,12–14]. In this
paper, the singular vectors are ordered in sequence with
decreasing absolute correlation. The basis vectors are then
sequentially included to form the corresponding CPCR L-
curve based plots.

2.5. Model updating

Calibration model updating involves updating a multivariate cali-
bration model formed in primary conditions to predict samples
measured in the secondary conditions. The approach used in this
paper is a variant of TR where the primary samples are augmented
with a few samples from the secondary conditions [22]. A weighting
parameter (η) is used to emphasize a small set of samples
from the secondary conditions. The minimization is expressed
as min Xb� yk k22 þ λ2 bk k22 þ η2 Mb� yMk k22

� �
for the model

y

0

ηyM

0
B@

1
CA ¼

X

λI

ηM

0
B@

1
CAb (6)

with solution b̂¼ XTXþ λ2Iþ η2MTM
� ��1

XTyþ η2MTyM

� �
where the M and yM are the updating set of spectra and
reference values for the secondary conditions and I is the
identity matrix. With this model updating approach, model
quality measures for the secondary conditions need to be

L1 norm for basis set selection

J. Chemometrics 2016; 30: 109–120 Copyright © 2016 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

111



assessed, such the RMSE of the samples forming M (RMSEM)
and others.

To integrate LPCR into model updating, Equation (6) is modi-
fied to

y

ηyM

� �
¼ X

ηM

� �
b (7)

that can be expressed as y′ ¼ X′b where the two prime symbols
indicate the augmented arrays on Equation (7). This equation is

then solved using the LPCR process with the L1 norm as noted in
Expression (5). Equation (7) is also solvable by CPCR, PCR, and PLS.
When using LPCR with Equation (7), there are two tuning

parameters, which singular vectors (τ in Expression (5)) and
a value for η. While L-curve approaches have been eva-
luated for selecting unique values for the two tuning pa-
rameters [22], a recent consensus approach [56] is used to
select models over a range of tuning parameter values.
Thus, a family of models instead of “a model” for calibration
updating are selected. In consensus or ensemble modeling,

Table I. Soy results at selected models based on minimum RMSECV and L-curvesa

Method Tuning parameterb ER b̂
��� ���

2
RMSEC RMSECV R2 Slope Intercept

LPCR 1, 2, 3, 6, 8, 12(1,3,8) 6(3) 172(29.5) 0.82(0.89) 1.04(1.12) 0.91(0.88) 0.92(0.89) 1.01(1.22)
PCR 8(6) 8(6) 79(27.9) 0.80(0.98) 1.08(1.11) 0.89(0.89) 0.90(0.89) 1.01(1.32)
PLS 7(5) 10(7) 107(36.5) 0.75(0.86) 1.08(1.12) 0.89(0.89) 0.92(0.90) 0.95(1.16)
RR λ68 = 0.015(λ56 = 0.070) 10(6) 107(26.3) 0.72(0.87) 1.05(1.09) 0.96(0.89) 0.92(0.89) 1.03(1.29)
aValues in parentheses are from L-curve selected models.
bSVD basis vectors for LPCR, number of SVD basis vectors for PCR, number of PLS LVs, and ridge value.

Figure 1. Soy calibration mean RMSECV curves plotted against (a) ER and (c) model L2 norm. The corresponding expansions of (a) and (c) are in (b) and
(d). The mean RMSEC is plotted against the model L2 norm in (e) with an expansion in (f). LPCR (green circles), PCR (sold red line), PLS (blue plus sign),
and RR (black asterisk).

P. Shahbazikhah et al.

wileyonlinelibrary.com/journal/cem Copyright © 2016 John Wiley & Sons, Ltd. J. Chemometrics 2016; 30: 109–120

112



a sample is predicted with a collection of models and a
composite (fused) prediction is formed [2,57–61]. The typical
process forms multiple models by random sampling across
samples (bagging), variables (random subspace method), or
both. The consensus approach from previous work [56] is

used in this study. Briefly, two-dimensional landscapes of
the same model quality measures used in simple L-curve
type plots are used as the tuning parameters vary. These
landscapes are assessed visually to determine tradeoff
regions. Threshold values are then set for the model quality

Figure 2. All respective CV soy model β vectors for the SVD basis set (Equation (4)) at the models forming the mean minima RMSECV values
for (a) LPCR, (c) PCR, (e) PLS, and (g) RR. Plotted in (i) are the mean weight values across all the CVs for LPCR (green circles), PCR (sold red line),
PLS (blue plus sign), and RR (black asterisk). The corresponding plots in (b), (d), (f), (h), and (j) are at the models in the corner region of the
L-curve in Figures 1e and f.

L1 norm for basis set selection
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measures relative to values in optimal tradeoff regions.
Models passing thresholds are then used for prediction of
new samples from the secondary conditions.

3. EXPERIMENTAL

3.1. Software

The MATLAB programs used in this study were written by the
authors using MATLAB 2010b (The MathWorks, Natick, MA).

3.2. Models and CVs

For each data set, LMOCV was used with 500 data splits using
60% of the samples as the calibration set and the remaining
samples as the validation set. On each LMOCV split, ER is calcu-
lated for each modeling method across all respective tuning
parameters using normally distributed random noise added to
y 300 times (N) with δ set to 0.5. Eigenvector weights are also
calculated on each LMOCV split for each respective tuning
parameter. Mean model assessment values of the 500 LMOCVs
are used to select tuning parameters as well as the values re-
ported for plots and tabulated results. For RR and model
updating, the λ and η values for all methods are the same and
ranged from 112 to 10�3 with 100 values. On each CV data split,
the calibration set is mean centered and the validation is cen-
tered to the calibration mean. For the calibration updating study
with the pharmaceutical tablet data sets, additional specifics are
given in the data set description.

3.3. Soy data

The soy data set consists of near infrared (NIR) spectra for 60
samples measured from 1100 to 2500 nm at 4-nm intervals for
350 wavelengths [62]. Protein content is the analyte.

3.4. Wheat data

There are 87 wheat samples measured in the NIR from 1100 to
2500 nm at 10-nm intervals for 140 wavelengths [63]. Protein
content is the analyte.

3.5. Corn data

The 80 samples are measured in the NIR from 1100 to 2500 nm at
2-nm intervals for 700 wavelengths [64]. Moisture content is the
analyte and spectra measured on m5 are used.

3.6. Tablet data

The pharmaceutical tablet data set consists of 310 Escitolopram
tablets measured in the range of 7400–10 507 cm�1 for a total
of 404 values [65]. Tablets are subdivided into four types (type

Table II. Wheat results at selected models based on minimum RMSECV

Method Tuning parametera ER b̂
��� ���

2
RMSEC RMSECV R2 Slope Intercept

LPCR 1–21 21 710 0.19 0.46 0.73 0.86 1.61
PCR 22 22 739 0.18 0.46 0.74 0.87 1.61
PLS 14 28 773 0.16 0.46 0.74 0.88 1.43
RR λ86 = 0.001 25 760 0.14 0.44 0.75 0.85 1.74
aSVD basis vectors for LPCR, number of SVD basis vectors for PCR, number of PLS LVs, and ridge value.

Figure 3. Wheat calibration mean RMSECV curves plotted against (a) ER
and (b) model L2 norm. Plotted in (c) are the mean weight values across
all the CVs. LPCR (green circles), PCR (sold red line), PLS (blue plus sign),
and RR (black asterisk).
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1, type 2, type 3, and type 4) based on total tablet weights of 90,
125, 188, and 250mg. Because tablet types have different total
weights, respective tablet types have different shapes and sizes
with tablet thicknesses ranging from 2.9 to 4.3mm. There are
30 tablets for each batch tablet type combination. As used in
previous calibration updating work, tablets from laboratory and
full batches are used for the calibration updating study [66].
The 60 lab batch tablets of types 1 and 2 are used as a fixed pri-
mary calibration set (X and y in Equations (6) and (7)). Full batch
tablet types 1 and 2 are set to the secondary condition with
eight tablets (four of each type) used for the updating set and
the remaining 52 tablets for validation. One hundred random
CVs were used to form the updating (M and yM in Equations
(6) and (7)) and validation sets for the secondary full batch tab-
lets. Because there is only one primary calibration set, it is mean
centered to its mean only once. On each CV split of the second-
ary tablets, the updating set is mean centered and the second-
ary validation samples are centered to this mean.

4. RESULTS AND DISCUSSION

Results from using CPCR for forming a subset of selected basis
vectors are not shown for the calibration modeling portion of
this study. The calibration behavior is the same as LPCR up to
the minimum RMSECV from the LMOCV (which is used to select
the subset of singular vectors). After the minimum RMSECV, the
vectors selected by LPCR and CPCR deviated; probably because
of the random chance correlations from the noise in the remain-
ing basis vectors. Conversely, for the calibration updating, LPCR
and CPCR behaved differently, and results are presented for both
processes. As noted previously, basis vectors were not tested for
significance and similarly, statistical testing [67] was not per-
formed on the model quality measures for the different calibra-
tion processes. Instead, the model quality measures are tracked
in conjunction with basis vectors weights.

4.1. Soy data set for calibration

Mean RMSCV and model complexity measures are plotted in Fig-
ures 1a and c. Expansion of the plots are shown in Figures 1b

and d. Using b̂
��� ���

2
or the model ER allows comparison between

the methods on one plot compared to separate plots with the
tuning parameter on the x-axis. At the RMSECV minima, the ERs
indicate the LASSO L1 norm sorted LPCR model has the smallest

ER indicating the least complexity. However, with the b̂
��� ���

2
as

the complexity measure, the LPCR and RR models appear more
similar. The PCR models have erratic RMSECV behavior. As

Table III. Corn results at selected models based on minimum RMSECV

Method Tuning parametera ER b̂
��� ���

2
RMSEC RMSECV R2 Slope Intercept

LPCR 1–9,11,12 11 23.7 0.02 0.02 1.00 0.99 0.06
PCR 12 12 23.9 0.02 0.02 1.00 1.00 0.04
PLS 9 17 23.1 0.02 0.02 1.00 1.00 0.02
RR λ68 = 0.008 10 23.9 0.01 0.02 1.00 0.99 0.10
aSVD basis vectors for LPCR, number of SVD basis vectors for PCR, number of PLS LVs, and ridge value.

Figure 4. Corn calibration mean RMSECV curves plotted against (a) ER
and (b) model L2 norm. Enlargements are shown as insets. Plotted in
(c) are the mean weight values across all the CVs. LPCR (green circles),
PCR (sold red line), PLS (blue plus sign), and RR (black asterisk).
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expected, RR has the smoothest plots regardless of the model
complexity measure.

Selecting the models at the minimum RMSECV values, some
model quality measures are tabulated in Table I. While the
RMSECV for LPCR is the smallest, the model vector L2 norm is
the largest. The values listed in Table I reveal that tradeoffs exists
between the different modeling methods when using the mini-
mum RMSECV to select the final model.

Shown in the first column of Figure 2 are all the CV data
splits for the respective model β vectors from Equation (4)
at the models forming the minima RMSECV values using
the corresponding SVD basis vectors. Plotted in Figure 2i
are the mean weight values across all the CV. From the
plots in the first column of Figure 2, it is clear that LPCR
has selected a subset of basis vectors and as expected, the
PLS and RR models can make use of all the rank k SVD basis
vectors. While only the six SVD basis vectors 1, 2, 3, 6, 8,
and 12 are used for LPCR, the method utilizes the 12th basis
vector compared to PCR stopping at the 8th basis vector.
While TPCR stops at the 8th basis vector, PLS and RR use
more basis vectors with RR applying a greater weight than
PLS at the later basis vectors. From the weight values plot-
ted for all the data splits, all the methods show erratic
weighting behavior except LPCR. The large weight given to
the 12th SVD basis vector for the LPCR model explains the
large L2 norm.
Instead of using the minima in RMSECV plots, the

bias/variance tradeoff is assessed at points before the re-
spective RMSECV minima using the mean RMSEC, RMSECV,

Figure 5. Tablet RMSECV landscapes for (a) LPCR, (b) CPCR, and (c) PCR, (d) PLS, and (e) TR. White plus signs correspond to models passing thresholds
provided in Table IV. In (f) is a bar plot of the mean model quality measures in Tables V and VI with 1 = RMSEC, 2 = RMSEM, 3 = b̂

��� ���
2
, 4 = R2 (X,y), 5 = R2

(M,yM), 6 = intercept (X,y), 7 = intercept (M,yM), 8 = slope (X,y), 9 = slope (M,yM), 10 = RMSECV, 11 = R2 CV, 12 = intercept CV, 13 = slope CV. The order of
the bars are LPCR, CPCR, PCR, PLS, and TR.

Table IV. Tablet threshold model quality measure values for
model updating

Measure Minimum Maximum

R2 X,y 0.75 0.90
Slope X,y 0.95 0.99
Intercept X,y 0.05 0.50
R2 M,yM 0.98 0.99
Intercept M,yM 0.05 0.50
Slope M,yM 0.95 0.99
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and the b̂
��� ���

2
plotted in Figures 1c–f. The corner regions are

at smaller b̂
��� ���

2
and ER values than at the RMSECV minima

indicating the minimum RMSECV models are probably
overfitted. From Figure 1, it is observed that the L-curves
with RMSEC closely mimic the RMSECV plots up to the
RMSECV minima as is the usual case. Listed in Table I are
the model quality measures for models in the corner re-
gion. Again, there are tradeoffs between the different cali-
bration methods but all are essentially the same except
PCR which has a small ER value.
Plotted in the second column of Figure 2 are the corresponding

SVD basis vectors weights for all the CV data splits and the mean
weight values across all the CV. From these plots in Figure 2, it is
observed that LPCR selects basis vectors 1, 3, and 8. The PCR
models again tend to be more erratic in the weighting behavior.
The PLS and RR weight later basis vectors, but not as much as with
the models at the minima RMSECV.

4.2. Wheat data set for calibration

Shown in Figure 3 are the mean RMSCV and model complexity
measures. From these plots, the models selected are at the min-
ima RMSECV values because of the agreement of the minima
corresponding the corner to the RMSEC L-curves. The mean
SVD basis weight values (βi) at the selected models across all the
CV splits are shown in Figure 3. The only unique trend observed
with this data set is that LPCR selected a top-down ordered subset
of basis vectors stopping at basis vector 21 while TPCR stops at the
22nd basis vector. Values tabulated in Table II show that all the
models are essentially predicting the same.

4.3. Corn data set for calibration

The plots of mean RMSCV values and model complexity mea-
sures displayed in Figure 4 reveal no minima and the curves
are shaped as RMSEC L-curves, i.e. the corner regions of the
RMSEC L-curve complements the corner region of the
RMSECV plot. This is not uncommon and hence, using the
corner region of the bias/variance tradeoff for the calibration

set is useful in this situation. The mean SVD basis weights
presented in Figure 4 show that all the calibration methods
use the same basis vectors (but weighted differently as with
the other data sets) with the following exceptions: LPCR uses
basis vectors 1–12 except the 10th, PCR uses 1–12, and PLS
and RR use most of the rank k basis vectors with emphasis
on the 1–12 basis vectors and slight weight enhancements
on basis vectors 17 and 18 for PLS. The small variations in
the model measures of quality tabulated in Table III indicate
that the models have no distinctive differences between the
methods.

4.4. Tablet data set for model updating

As noted in section 2.5 on Model updating, the approach used in
this paper to select the two tuning parameter values for each

Table VI. Tablet PLS and TR results at selected updated
models based on thresholds in Table IV

Model measure PLS (5 models) TR (121 models)

Min. Mean Max. Min. Mean Max.

RMSEC 0.84 0.85 0.86 0.74 0.81 0.84
RMSEM 0.16 0.16 0.16 0.12 0.14 0.17

1.21 1.21 1.21 1.01 1.76 2.84
R2 X,y 0.77 0.77 0.77 0.78 0.79 0.81
R2 M,yM 0.98 0.98 0.98 0.98 0.99 0.99
Intercept X,y 0.05 0.12 0.19 0.05 0.15 0.34
Intercept M,yM 0.21 0.25 0.31 0.10 0.17 0.33
Slope X,y 0.97 0.98 0.99 0.95 0.98 0.99
Slope M,yM 0.95 0.96 0.97 0.95 0.97 0.98
RMSECV 0.27 0.27 0.27 0.27 0.28 0.29
R2 0.96 0.96 0.96 0.96 0.96 0.96
Intercept 0.33 0.38 0.44 0.27 0.32 0.46
Slope 0.94 0.94 0.95 0.93 0.95 0.96
η 11.22 14.31 17.78 11.22 33.54 112.0
No. LVs (PLS) λ (TR) 2 2 2 1.78 4.34 11.22

Table V. Tablet LPCR, CPCR, and PCR results at selected updated models based on thresholds in Table IV

Model measure LPCR (21 models) CPCR (19 models) PCR (30 models)

Min. Mean Max. Min. Mean Max. Min. Mean Max.

RMSEC 0.79 0.86 0.88 0.78 0.86 0.88 0.78 0.83 0.87
RMSEM 0.125 0.14 0.17 0.12 0.14 0.17 0.13 0.14 0.17

b̂
��� ���

2
1.15 4.79 8.64 1.15 4.13 8.64 1.15 2.62 3.57

R2 X,y 0.77 0.77 0.80 0.77 0.77 0.80 0.77 0.79 0.80
R2 M,yM 0.98 0.99 0.99 0.98 0.98 0.99 0.98 0.99 0.99
Intercept X,y 0.06 0.11 0.24 0.06 0.11 0.30 0.08 0.16 0.30
Intercept M,yM 0.09 0.13 0.33 0.09 0.14 0.33 0.08 0.12 0.33
Slope X,y 0.96 0.98 0.99 0.96 0.98 0.99 0.96 0.98 0.99
Slope M,yM 0.95 0.98 0.99 0.95 0.98 0.99 0.95 0.98 0.99
RMSECV 0.27 0.30 0.32 0.27 0.29 0.32 0.27 0.30 0.31
R2 0.95 0.96 0.96 0.95 0.96 0.96 0.95 0.96 0.96
Intercept 0.25 0.28 0.46 0.25 0.29 0.46 0.26 0.29 0.46
Slope 0.93 0.96 0.96 0.93 0.96 0.96 0.93 0.96 0.96
η 11.22 46.18 111.9 11.22 48.23 111.9 11.22 55.20 111.9
No. SVD basis vectors 2 3 4 2 2.9 4 2 3.3 4
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modeling method is to set up thresholds on measures of model
quality [56]. This process results in a collection of acceptable
models. While threshold values are data set dependent, natural
target values are respectively 1, 1, and 0 for R2, slope, and inter-
cept from plotting predicted values against reference values. In
order to set up thresholds, landscapes of these model quality
measures (and others) for the primary samples and secondary
samples are formed, i.e. images of the measures as the tuning
parameters vary (not shown). These landscapes are inspected
for regions with acceptable bias/variance tradeoffs. Listed in
Table IV are the threshold values used for the Tablet data set.
The final prediction for a sample is the mean prediction from
the collection of models, but other combinations of the predic-
tion values can be used.

Plotted in Figure 5 are RMSECV landscapes using LPCR, CPCR,
PCR, PLS, and TR. The landscapes are similar but because of the
discreetness in the PLS and PCR tuning parameters (LVs and
SVD basis vectors), the optimal model region is sharp. For TR
with a continuous tuning parameter (λ), landscape is shaped like
a bowl in the optimal model region.

Shown in Table V are the mean model quality measures from
the collection of LPCR, CPCR, and PCR passing the thresholds.

Also listed are the number of models passing the thresholds
and the ranges for the model quality measures. The PLS and
TR values for the same measures of models passing thresholds
are listed in Table VI. All respective models passing the thresh-
olds are shown on the RMSECV landscapes in Figure 5. From
the values tabulated in the Tables V and VI, it appears that
except for the L2 norms of the model vectors, one method
does not outperform another and all five approaches are
equivalent. This equivalency (except model vector L2 norms)
is characterized by the bar plot in Figure 5f of the mean
values listed in Tables V and VI. The model L2 norms are larg-
est for LPCR and CPCR due the some of the selected models
having large values. The other methods generally end up
with models with a more constant model L2 norm.
A goal of LPCR and CPR is to allow selection of a subset of SVD

basis vectors not necessarily in the top-down order. Shown in
Figure 6 are the histograms of the basis vectors selected for
the LPCR, CPCR, and PCR models passing the thresholds. Most
of the LPCR and CPCR models use SVD basis vectors 1, 2, and
5. The differences between the two methods is that LPCR does
not use basis vector 3 while CPCR does for a few of the models.
Basis vectors for PCR are mostly 1 through 3 with some models
including basis vector 4. Even though there is a mix of basis
vectors between LPCR, CPCR, and PCR, the values in Table V
and the bar plot in Figure 5f indicate there are no noteworthy
differences between the methods except for the L2 norms of
the model vectors.

5. CONCLUSION

The LPCR and CPCR calibration and model updating methods
have the flexibility to select a subset of SVD basis vectors from
total possible. However, even if the methods actually form
models with a non top-down ordered subset, the model quality
measures evaluated in this paper do not show any notable ad-
vantages. The model vector L2 norms were found to usually be
larger than the PCR, PLS, RR, and TR models when a non top-
down set is selected by LPCR and CPCR. Thus, with LPCR and
CPCR, there is the potential for larger predication variances than
the other three methods because of the larger model vector L2
norms. A possible use for using LPCR or CPCR is to first project
a data set with the basis vectors found best for prediction with
LPCR or CPCR and then apply PLS or RR. This preprocessing step
by LPCR or CPCR may remove basis vectors not associated with
analyte.
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