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Calibration updating—transfer and/or maintenance—has historically been
implemented using a simple but effective technique: in addition to primary sam-
ples, include a small number of secondary samples and weight them. It would be
beneficial if these classical weighting techniques could be enhanced. Moreover,
it would be ideal if we could only use secondary spectra without reference mea-
surements. In this paper, we examine multiple calibration updating scenarios
involving unlabeled and labeled secondary spectra. First, we propose three new
updating approaches involving sample augmentation whereby unlabeled sec-
ondary spectra are used to construct an “undesirable” subspace. This subspace
is then used to steer the model vector away from a spectroscopically undesir-
able solution. Second, we propose two new feature augmentation approaches
using labeled secondary samples. These three approaches involves the sum
of two model vectors, a dedicated primary model vector plus a perturbation
vector, that can accommodate new secondary samples. We rigorously vet the
proposed approaches across two near-infrared (NIR) data sets and across multi-
ple data splits. Out of all of the approaches examined, one feature augmentation
approach provides improved results compared with existing approaches, and
one sample augmentation approach utilizing only unlabeled secondary spectra
appears promising.
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1 INTRODUCTION

The normal process of building a spectral calibration model typically requires a large set of samples such that all variances
are included in future predictions. However, once such a primary calibration model has been built, circumstances can
cause the model to become invalid. For example, instrumental drift or uncalibrated spectral features appearing in new
secondary samples can occur later in time. Alternatively, an unknown secondary sample could be measured on an instru-
ment other than the instrument the calibration model was built on. Another situation invalidating a primary model are
seasonal changes for agricultural analysis. For these and other situations, the instrument must be recalibrated to accom-
modate new conditions. In theory, the remedy would be to include a large number of new calibration samples along with
their reference measurements. In practice, though, the inclusion of such samples is often costly and lengthy in terms
of laboratory time. Hence, mechanisms are needed to update the current model to include the new chemical, physical,
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environmental, and/or instrumental effects not spanning the current primary calibration domain. We use calibration
updating as an umbrella term for adapting secondary to primary situations.

This paper has two objectives: (a) combine data from two sources—a large set of primary samples and a smaller set of
secondary samples into a single linear regression framework—and (b) make predictions for new secondary samples. The
number of secondary samples with reference measurements in the secondary calibration set needs to be small in number
relative to the number of primary samples for the following reasons. In many real world applications, it is often difficult or
expensive to acquire additional reference measurements. In some cases, acquiring additional reference measurements is
not an issue but not desirable, say, from a marketing perspective or from the actual use-case scenario of a device. Instead
of using secondary samples with reference values, this paper also studies methods and situations where the secondary
reference values are not known, ie, unlabeled samples.

The differences between primary and secondary samples follow a continuum from similar to dissimilar. By similar, we
mean that the primary and secondary samples are drawn from the same statistical distribution and share the same sources
of variation. If the primary and secondary samples are highly similar, then one can simply pool all of the samples together.
If the secondary samples are radically dissimilar from the primary samples, then one can ignore the primary samples
and build a calibration model solely on the secondary samples… provided there are enough samples. Many settings in
chemometrics are intermediate between these two extremes: although we expect the secondary samples to be dissimilar
(but not that dissimilar) to the primary samples, the primary samples should still provide leverage such that improved
prediction can be obtained for secondary samples. Although the primary and secondary samples often share considerable
spectral overlap across wavelength bands and are highly correlated, the subtle differences are enough to wreck havoc on
a prediction model based solely on primary samples.

Calibration updating has a long history and is well studied in chemometrics and spectroscopy; see other studies1-18 and
references therein. We narrow the scope of inquiry to sample and feature augmentations, a class of calibration updating
techniques that vertically and/or horizontally concatenate secondary samples to primary samples. As will be illustrated
later on in this paper, this concatenation of secondary samples results in a penalized least squares problem. Note that we
are not investigating the following calibration updating approaches:

• Approaches that require a standardization set.1-5,8 A standardization set is a common set of samples measured across
two or more instruments (or samples measured across two or more different measuring conditions). Since each stan-
dardization sample has the same reference value across instruments, the variability of the spectral measurements
should largely reflect instrument-to-instrument difference. To establish transfer parameters, the standardization sam-
ples need to be representative of the entire experimental regime and stable enough over time between situations in
which the standardization is performed. For many situations, the creation of a standardization set is not possible.

• Spectral preprocessing techniques.7,9,19-22 These techniques refer to approaches (eg, wavelets) that transform the spectra
to minimize domain differences between the primary and secondary samples without the use of a standardization set.

This is not to say that one cannot utilize standardization sets or preprocessing techniques in tandem with sample and
feature augmentations, but those investigations are outside the scope of this paper.

The term model, as used here in this paper, refers to a linear model, ie, a system of linear equations coupling together
both primary and secondary samples in a particular fashion. What is of importance is how one constructs the linear
system such that a priori chemical and/or spectroscopic information can be meaningfully incorporated. Of less impor-
tance is the particular regression algorithm that is subsequently applied to the linear system. We are agnostic with
respect to regression algorithms in part because each discipline has its own set of “go-to” methods to apply. In short,
the art and craft of calibration updating resides in the construction of a linear model. For the calibration updating
models discussed in later sections, partial least squares (PLS) will be the default regression algorithm applied to the
linear model.

This paper is organized as follows. Section 2 describes the four baseline models that the proposed updating methods will
be compared against. Section 3 describes a class of calibration updating models with unlabeled data collectively referred
to as sample augmentation models. Three methods will be described here. Section 4 describes feature augmentation
models in which the number of features (wavelengths) are increased by horizontally concatenating secondary spectra (or
matrices derived from secondary spectra) to primary spectra and reference measurements. Two methods are described.
Section 5 introduces the data sets to be examined and how they will be partitioned for performance assessment. Section 6
discusses performance results across the various calibration updating models. Section 7 concludes the paper and discusses
future work.



ANDRIES ET AL. 3 of 20

TABLE 1 Summary of updating methods and associated equationsa

Updating Section Calibration model Prediction
method number

Baseline methods
PPS 2.1 XPb = yP �̂�S =

(
xS − 𝝁

X
P
)Tb + 𝜇

y
P

SPS, SSPS 2.2, 2.3 XSb = yS �̂�S =
(
xS − 𝝁

X
S
)Tb + 𝜇

y
S

LMC 2.4
[

XP
𝜆XS

]
b =

[
yP
𝜆yS

]
�̂�S =

(
xS − 𝝁

X
S
)Tb + 𝜇

y
S

Sample augmented updating methods

NAR 3.1, 3.2
[

XP
𝜏R

]
b =

[
yP
0

]
�̂�S =

(
xS − 𝝁

X
P
)Tb + 𝜇

y
P

Feature augmented updating methods

FA-1 4.2
[

XP 0
𝜆XS 𝜆XS

] [
bP
bS

]
=
[

yP
𝜆yS

]
�̂�S =

(
xS − 𝝁

X
S
)Tb + 𝜇

y
S

FA-2 4.2
⎡⎢⎢⎣

XP 0
0 XP

𝜆XS 𝜆XS

⎤⎥⎥⎦
[

bP
bS

]
=
⎡⎢⎢⎣

yP
0
𝜆yS

⎤⎥⎥⎦ �̂�S =
(
xS − 𝝁

X
S
)Tb + 𝜇

y
S

aSee respective sections for definitions.

We now discuss notation. Symbols that are not boldface represent scalars (x or P). Lowercase and uppercase bold-
face symbols represent column vectors (x) or matrices (X). All vectors are column vectors unless noted otherwise. The
superscripted symbols T and −1 indicate the transpose and inverse, respectively, of a vector or matrix. The matrices I
and 0 and vectors 1d and 0d indicate the identity matrix, a matrix of zeros, and a column vector of d ones and zeros,
respectively. The comma and semicolon indicate the horizontal and vertical concatenation (or stacking) of matrix/vector
entries. For example, it will be convenient to represent a n × d matrix X of spectra by concatenating column vectors xj =
[xj1; xj2; … ; xjd] (or xj = [xj1, xj2, … , xjd]T) such that X = [x1, x2, … , xn]T whereby xj corresponds to the jth spectrum.
The vector y = [y1; y2; … ; yn] (or y = [y1, y2, … , yn]T) represents the response variable (eg, reference measurements
such as analyte concentrations). We only consider the case where each spectrum is associated with an univariate response
variable, not multiple response variables. In this paper, XP = [x(P,1), · · ·, x(P,nP)]

T and yP = [𝑦(P,1), · · ·, 𝑦(P,nP)]
T correspond

to nP samples of primary calibration spectra and their corresponding reference measurements, respectively. Similarly,
XS = [x(S,1), · · ·, x(S,nS)]

T and yS = [𝑦(S,1), · · ·, 𝑦(S,nS)]
T correspond to nS samples of secondary calibration spectra and their

respective reference measurements. We will heretofore refer to samples with and without reference measurements as
labeled and unlabeled samples, respectively. Moreover, we will also require the use of nSU unlabeled secondary samples
in the matrix XSU. It is assumed that the number of secondary calibration samples is small in size relative to the number
of primary calibration samples and the number of unlabeled secondary samples, ie, nS ≪ nP and nS ≪ nSU. In addition,
we assume the primary and secondary spectra span the same wavelength range at the wavelength intervals. The updating
methods discussed in the following sections are tabulated in Table 1.

2 BASELINE UPDATING MODELS

As mentioned in section 1, PLS will be the regression approach applied to all of the linear systems in Table 1. The number
of latent vectors associated with PLS will be denoted by the integer k. In this section, we will introduce four baseline
methods by which the other updating methods will be judged: primary predicting secondary (PPS), secondary predicting
secondary (SPS), small secondary predicting secondary (SSPS), and local mean centering (LMC).

2.1 Primary predicting secondary
Primary predicting secondary corresponds to no calibration updating whatsoever—the calibration data consist only of a
large pool of primary samples. As a result, we solve the minimization problem (and corresponding linear system) for the
model vector b:

min
b

||XPb − yP||22 ⇐⇒ XPb = yP. (1)
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The matrix XP and vectors b and yP have dimensions nP × d, d × 1 and nP × 1, respectively. Here, we assume that both
XP and yP have been mean centered, ie,

XP ∶= XP − 1nP (𝝁
X
P )

T, 𝝁
X
P = 1

nP
(XP)T1np ,

yP ∶= yP − 1nP (𝜇
y
P)

T, 𝜇
y
P = 1

nP
(yP)T1np .

(2)

(The symbol “:=” is meant to represent assignment as in “the left-hand side is assigned the value of the right-hand side.”)
Prediction on a new secondary sample xS proceeds by mean centering the secondary sample using the primary mean:
�̂�S =

(
xS − 𝝁

X
P
)Tb + 𝜇

y
P. We expect any worthwhile calibration updating approach to outperform PPS.

Note that Equation 1 attempts to find a vector b = [b1, b2, … , bn]T that adequately models the primary data with
respect to prediction on a novel primary sample xP. For the model vector b to give preference to secondary data, a penalty
term is often appended to the minimization: ||XPb − yP||22 + 𝜆2P, (3)
for some suitably chosen P. Different choices for P encode different mechanisms for updating a model to secondary data.
Such penalty choices will be examined later in sections 2.4, 3, and 4.

2.2 Secondary predicting secondary
Secondary predicting secondary corresponds to the best case scenario with respect to prediction on new secondary spectra:
the calibration samples consist of a large pool of secondary samples. The ideal calibration updating method seeks to match
(but not likely to exceed) the performance of SPS. In terms of a linear system, we solve

min
b

||XSb − yS||22 ⇐⇒ XSb = yS, (4)

for the model vector b. The matrix XS and vectors b and yS have dimensions nS × d, d × 1, and nS × 1, respectively.
Similar to PPS, we assume that both XS and yS have been mean centered, ie,

XS ∶= XS − 1nS(𝝁
X
S )

T, 𝝁
X
S = 1

nS
(XS)T1nS ,

yS ∶= yS − 1nS (𝜇
y
S)

T, 𝜇
y
S = 1

nS
(yS)T1nS .

(5)

Prediction on a new secondary sample xS proceeds by mean centering the secondary sample using the secondary means:
�̂�S =

(
xS − 𝝁

X
S
)Tb + 𝜇

y
S. In practice, one never knows the level of performance associated with SPS because one generally

never has that many labeled secondary samples to begin with. (If they did, then there would be no need for calibration
updating in the first place.) Secondary predicting secondary serves as the theoretical ideal that all calibration updating
methods aspire to.

2.3 Small secondary predicting secondary
Small secondary predicting secondary is the same as SPS except that a much smaller set of secondary samples is used. Here,
we ask the question: instead of a full-blown recalibration requiring many secondary reference values, can one achieve
similar performance results using the same smaller set of labeled secondary samples used in the sample augmentation
method? If so, then there is no need to use an updating method that pools together a large number of labeled primary
samples with the same small number of labeled secondary samples.

2.4 Local mean centering
Here, we add a small set of labeled secondary samples to a large pool of labeled primary samples such that nS ≪ nP. The
labeled secondary samples are then weighted by a value denoted by 𝜆. The resulting model vector b depends upon two
tuning parameters: the number of PLS latent vectors k and the weight 𝜆. The use of the word local refers to the separate
mean centering of the primary and secondary samples:

XP ∶= XP − 1np(𝝁
X
P )

T, yP ∶= yP − 1np(𝜇
y
P)

T,

XS ∶= XS − 1ns(𝝁
X
S )

T, yS ∶= yS − 1ns(𝜇
y
S)

T.
(6)



ANDRIES ET AL. 5 of 20

One then solves the following sample augmented for the model vector b

min
b

(||XPb − yP||22 + 𝜆2 ||XSb − yS||22) ⇐⇒

[
XP
𝜆XS

]
b =

[
yP
𝜆yS

]
, (7)

whereby weighted secondary samples are vertically stacked underneath primary samples. The weighting by 𝜆 in
Equation 7 is performed on mean-centered secondary samples. That is, model updating is largely achieved by first moving
the centroids of the primary and secondary spectra (via separate mean centering) independently to the origin and then
scaling the size of the secondary samples. The prediction on a new secondary spectrum xS uses the secondary means:
�̂�S =

(
xS − 𝝁

X
S
)Tb + 𝜇

y
S.

When 𝜆 > 0 in Equation 7, the resulting model vector b obviously depends upon both {XP, yP} and {XS, yS}. When
𝜆 = 0, the linear system reduces to XPb = yP and the vector b models only primary samples. However, the prediction
�̂�S =

(
xS − 𝝁

X
S
)Tb + 𝜇

y
S still utilizes the means from the secondary samples. Such mean centering often compensates for

much of the spectral differences (eg, sloping background, wavelength shifts, and intensity differences) between primary
and secondary samples, and in some cases, this centering is all that is actually needed.23-25

The linear system in Equations 6 and 7 has been previously proposed for model updating in chemometrics
applications.14,26,27 In other applications, the weight 𝜆 appears on the primary sample block28:[

𝜆XP
XS

]
b =

[
𝜆yP

yS

]
, (8)

Here, the 𝜆 value—between 0 and 1—plays the role of a “forgetting” factor whereby older primary samples in XP are given
less weight than more recent samples in XS.

Secondary predicting secondary and PPS will define the lower (better) and upper (worse) bounds of updating
performance—the extremes where one calibrates on samples from only one domain (exclusively primary or secondary).
Local mean centering will be the benchmark method that utilizes labeled samples from both the primary and secondary
domains. The intent of this paper is to find updating methods whose performance is intermediate between SPS and
LMC. Otherwise, LMC will simply suffice. The LMC method can be considered as a form of sample augmentation but to
distinguish it from the new sample augmentation methods presented next, it is referred to as LMC.

3 UPDATING VIA NULL SAMPLE AUGMENTATION

In this section, we will either add, via vertical concatenation, labeled secondary secondary samples {XS, yS}, unlabeled
secondary spectra XSU, or a combination of both to the pool of primary samples {XP, yP}. The resulting model vector b
depends upon two tuning parameters (k and 𝜏). The methods are listed in Table 1.

Instead of adding labeled secondary samples {XS, yS} to the pool of primary calibration samples {XP, yP}, we would
ideally like to add only unlabeled secondary spectra XSU for purposes of updating. Our framework for incorporating
spectral information from both XP and XSU is expressed in the following linear system:

min
b

(||XPb − yP||22 + 𝜏2 ||Rb||22) ⇐⇒

[
XP
𝜏R

]
b =

[
yP
0

]
. (9)

The matrix R has dimension nR × d. The number of rows nR will depend upon the approach used to construct R, and
these approaches will be described in the next few subsections. The above linear system essentially approximates the
following equality-constrained least squares problem: solve XPb = yP subject to the equality constraints29,30 Rb = 0.
Mathematically, Rb = 0 implies that the model vector b = [b1, … , bd]T of regression coefficients is orthogonal to R.
This sample augmentation constitutes a simple yet effective form of orthogonal signal correction: the regression model is
attempting to be insensitive to undesirable spectral information contained in R by pointing the model vector b away from
it. This observation forms the basis of many calibration maintenance and transfer methods (see other studies14,15,27,31 and
the references contained therein) and augmented classical least squares (ACLS)17,32-35 procedures that decompose spectra
into pure-component concentrations and pure-component spectra. Our approach differs from previous methods in that
we include secondary samples with unknown reference measurements.

In some cases, the construction of such an R matrix is quite natural and spectroscopically intuitive. If one has a col-
lection of nonanalyte spectra, then one can simply set R to be equal to this collection.14,15,31,36,37 The interpretation here is
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the following: we want our model vector to point away from this undesirable subspace spanned by spectra containing no
analyte signals of interest. Note that in Equation 9, as 𝜏 → ∞, the model vector b approaches the net analyte solution bNAS

bNAS = X+
NASy where X NAS = XP

(
I − VRVT

R
)
, (10)

where VR are the loading vectors obtained from the singular value decomposition (SVD) of R.21,29,37 The pitfall of the net
analyte solution approach is the following: too much analyte information is often removed in the null projection from XP
to XNAS.27,37

With respect to nonanalyte spectra, there are two special cases: difference spectra and constant-analyte spectra. If one
has a fixed standardization set, then the samples can be measured across two instruments. Hence, two sets of spectra, X1
and X2 from the first and second instruments, respectively, are obtained. The difference spectra R = X1 − X2 embodies
instrument-to-instrument variation that we want our model vector b to be insensitive to. This approach has been utilized
in Kalivas et al.14 In the case of a collection of constant-analyte spectra, one could similarly create difference spectra R by
subtracting out the mean of the constant-analyte spectra from each spectrum in the collection. The subspace spanned by
this R embodies sample-to-sample differences that we want to immunize our model against.

In the absence of difference or non-analyte spectra, the construction of an undesirable subspace spanned by R that
is (a) spectroscopically meaningful and (b) uses only unlabeled secondary spectra is not self-evident. In the next few
subsections, three approaches to creating a matrix R will be proposed. Since all of the methods require that the solution
vector b lies in the null space of R, ie, Rb = 0, we will use the acronym NAR (short for null augmented regression)
to collectively refer to the collection of calibration updating methods that differ only in their spectral content for R. We
want to ascertain how close in performance the NAR collection of methods (leveraging unlabeled secondary samples) is
to benchmark performance of LMC (leveraging labeled secondary samples).

3.1 NAR primary and NAR secondary
What follows are two formulations based upon null projections: null augmented regression secondary (NARS) and null
augmented regression primary (NARP).

R =
{ XP(I − VSUVT

SU), NARP
XSU(I − VPVT

P), NARS
, (11)

where XP and XSU are decomposed via their respective SVDs:

XP = UPΣPVT
P and X SU = USUΣSUVT

SU. (12)

For NARP, the matrix R has dimension nP × d with the second block of Equation 9 being Rb = XP(I − VSUVT
SU)b = 0.

The matrix R embodies that part of the primary spectra XP that is insensitive to spectral variations in the unlabeled
secondary spectra XSU. Moreover, the orthogonality mechanism of Rb = 0 pushes b away from the undesirable subspace
spanned by R and toward XSU, which is precisely the space we want to update to. For NARS, the matrix R has dimension
nS × d with R = XSU(I − VPVT

P) embodying spectral variations in XSU that are not in XP. Here, the matrix R can be
interpreted as the unique contribution of the secondary spectra relative the primary spectra. However, the model vector
b is also orthogonal to this new contribution. Hence, when one predicts a new secondary spectrum xS with this b, only
that component in xS that resides in the space spanned by XP contributes to the overall prediction.

Caution is advised whenever null orthogonal projections are employed. If there is significant interaction and overlap
between the shared spectral interferents of XP and XS and the analyte, then there will be very little analyte information
left after the projection. In this case, the use of orthogonal projections can be more deleterious performance-wise than
the use of an oblique projections or no projections at all.27 For both NARS and NARP, the crucial question is as follows:
how much of the analyte information is lost in the null projection? If too much, then NARP and NARS will likely fail. A
wavelength selection variation of NARS was used as a potential local modeling method, but the problem of too much lost
analyte information persisted.38

For NARP, Equation 11 assumes that the loading vectors are derived from the unlabeled secondary samples. However,
this membership requirement can easily be relaxed. For example, suppose one defines a general set of secondary spec-
tra XSG comprised of some combination of secondary samples from the calibration spectra XS, the unlabeled secondary
spectra XSU or (if available) the validation secondary spectra XSV, then one can define the residual matrix as

R = XP(I − VSGVT
SG) where X SG = USGΣSGVT

SG, (13)
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via SVD. If R does involve loading vectors from the validation samples XSV, then NARP via Equation 9 can be viewed as
a form of transductive regression.39 In this transductive case, we are using the additional wavelengths/wave numbers to
glean additional sample density information that may help with prediction.40 For convenience, we will not consider all
possible subsets of {XS,XSU,XSV} but just XSG = XSU, which simplifies to NARP and NARS.

3.2 NAR eigenvalue
Generalized eigenvalue problems (GEPs) form another way to construct an undesirable subspace R. Generalized eigen-
value problems naturally arise in many diverse fields such as signal processing, pattern recognition, and machine
learning.41-43 These problems involve data from two different domains: source and target (or primary and secondary, respec-
tively, in the language of chemometrics). Using the notation introduced in this paper, GEPs typically involve two matrices:
total scatter T and domain scatter D:

T = XT
c Xc and D = (𝝁P − 𝝁SU)(𝝁P − 𝝁SU)T, (14)

such that X = [XP;XSU] is the vertical stacking of spectral domains, and Xc = X − 1n𝝁
T
X is the mean-centered version of

X with n = nP + nSU. Here, the spectral means of X and XSU are specified as follows:

𝝁X = 1
n

XT1n and 𝝁 SU = 1
nSU

XT
SU1nSU . (15)

Note that in linear discriminant analysis, one objective is to maximize domain (or between-class) scatter, ie, find a model
vector b that makes the difference between domain centroids as large as possible. Here, we seek the opposite: find vectors
b that minimize this difference.

For calibration updating purposes, the matrices T and D typically occur in the following minimization problem:

min
b

bTDb subject to bTTb = 1. (16)

By minimizing bTDb, we explicitly seek model vectors b that minimize domain scatter that pull together centroids from
primary and (unlabeled) secondary spectra. The inner product bTTb reflects total scatter and is analogous to princi-
pal component analysis: find vectors b of unit length such that variance is maximized. Using the standard approach of
Lagrange multipliers, we obtain the following GEP44,45:

Db = 𝛿Tb ⇒ Rb = 0 where R = D − 𝛿T. (17)

The solutions to Rb = 0 correspond to generalized eigenvectors that minimize domain scatter and maximize total scatter.
The scalar 𝛿 corresponds to a generalized eigenvalue, and it takes on two unique nonnegative values: 𝛿 = {0, 𝛿∗}. Here,
𝛿∗ > 0 is a nonzero eigenvalue that occurs only once while 𝛿 = 0 is a repeated eigenvalue. Based upon the performance
observations in Andries46 and Ghifary,47 scatter matrices R where 𝛿 = 0 are generally noninferior to the cases where 𝛿 is
nonzero in value, and we will use 𝛿 = 0 as the default value. When 𝛿 = 0, R simplifies to just the domain scatter matrix:
R = D = (𝜇P − 𝜇SU)(𝜇P − 𝜇SU)T. In fact, since D is a rank-one matrix, R can be further simplified to just one row:
R = (𝜇P − 𝜇SU)T. We will use the acronym NARE (short for NAR eigenvalue) to this approach of minimizing domain
scatter.

4 UPDATING VIA FEATURE AUGMENTATION

The previously introduced approaches have been premised on the following idea: that one regression vector alone is
enough to perform calibration updating. However, multicomponent regression methods have been proposed.48-50 This
section introduces methods based upon this concept. As noted previously, the methods introduced in this section are
summarized in Table 1 with PLS being the solution approach.

4.1 Example of feature augmentation
In an example from Google, internet viewing data from two sources are combined: a small set of expensive high-quality
observations (analogous to the secondary samples {XS, yS}) and a much larger set with less costly observations (analogous
to the primary samples {XP, yP}).49 The goal is to make predictions of internet viewing habits for samples drawn from
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the smaller set. Their proposed least squares minimization problem is the following (using our analogous chemometrics
notation):

||XSbS − yS||22 + ||XP(bS + bP) − yP||22 + 𝜆2 ||XSbP||22 ⇐⇒

[ XP XP
0 XS

𝜆XS 0

][
bP
bS

]
=

[ yP
yS
0

]
. (18)

The boldface zeros indicate matrices and vectors of appropriate dimension such that the matrix/vector concatenations
make sense. Here, the vector bP can be thought of as a perturbation of the model vector bS. The prediction on a new
primary sample xP is then based upon the sum b = bP + bS where �̂�P =

(
xP − 𝝁

X
P
)Tb + 𝜇

y
P.

4.2 Feature augmentation via LMC
We propose a modification of Equation 18 but based upon the LMC approach in Equation 7:

||XPbP − yP||22 + 𝜆2 ||XS(bP + bS) − yS||22 ⇐⇒

[
XP 0
𝜆XS 𝜆XS

] [
bP
bS

]
=
[

yP
𝜆yS

]
. (19)

Equation 19 will be denoted as FA-1. The prediction on a new secondary spectrum xS is also based upon the sum of
model vectors b = bP + bS such that �̂�S =

(
xS − 𝝁

X
S
)Tb + 𝜇

y
S. Unlike Equation 18, bS is a perturbation of the model

vector bP. In Equation 19, we may want to add an additional constraint: the secondary model vector bS is insensitive to
spectral variations in the primary spectra XP. That is, we want bS to point away from this undesirable subspace, and as
a consequence, we arrive at the orthogonality constraint XPbS = 0. To accommodate this additional restriction, we can
augment with another block in a similar fashion to Equation 18:[ XP 0

0 XP
𝜆XS 𝜆XS

][
bP
bS

]
=

[ yP
0
𝜆yS

]
. (20)

Equations 19 and 20 will be denoted as FA-1 and FA-2, respectively, where FA is an acronym for feature augmentation.

5 EXPERIMENTAL

5.1 Data sets
We examine two NIR data sets. One measures Juniper berry concentration in fecal spectra, and another measures
moisture, protein, and oil concentrations from soy seeds.

5.1.1 Goat feces (GOAT)
One hundred nine (109) NIR spectra were measured from 400 to 2498 nm at 2-nm intervals (1050 wavelengths).51,52 The
analyte of interest is Juniper berry concentration (%w/w) from goat fecal spectra. The samples are categorized into two
feeding trials with each trial corresponding to a different year: 1999 (61 samples) and 2002 (48 samples). Primary and
secondary samples correspond to samples drawn from years 1999 and 2002, respectively.

5.1.2 Soy seed (SOYS)
NIR spectra from 60 soy seed samples were collected in reflectance mode from 1102 to 2498 nm at 4-nm intervals (350
wavelengths) on two NIR instruments.53,54 Spectra were the average of five replicates. Reference values for moisture,
protein, and oil were determined by reference methods from wet chemistry. This data set has a standardization set that
can be defined, but such a set is not used in this study. Recall that a standardization set, as defined in this paper, is a set
of samples measured across both the primary and secondary conditions. This distinction matters when we form multiple
calibration and validation sets via random shuffling in section 5.4, so as not to incorporate the standard set scenario.

5.2 Sample sets
Depending upon the calibration updating method, different samples from the primary and secondary data will be used
to build the calibration model. The number of samples used in the sample sets for GOAT and SOYS are given in Table 2.
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TABLE 2 For each data set, the number of samples used in
each sample blocka

CALP CALS UNLS VALS Total
{XP, yP} {XS, yS} XSU {XSV, ySV}

SOYS 30 3 (6) 15 9 60
GOAT 61 5 (10) 24 14 109

aValues in parentheses () correspond to the case where the number of
samples in the CALS sample set is doubled.

No attempt is made to optimize the selection of calibration samples (eg, Kennard Stone algorithm). We want to mimic
what one often encounters in practice (especially if one is not involved in the design of experiment): a given calibration
set consisting of primary and secondary samples that are distinct. We will now define these sample sets.

Primary samples: The primary calibration sample set {XP, yP} will be denoted by the acronym CALP. For GOAT, all
61 samples from year 1999 are considered primary calibration samples. For SOYS, the first 50% of the samples from the
first instrument are deemed calibration samples. The actual number of respective CALP samples are listed in Table 2.
Secondary samples in GOAT: All samples from year 2002 are secondary samples. These samples are subdivided
into three sets: a calibration secondary set (CALS or {XS, yS}), an unlabeled secondary set (UNLS or XSU) whereby
the reference measurements for the spectra in XSU are intentionally masked, and a validation secondary set (VALS or
{XSV, ySV}). The CALS and UNLS sample sets are used for calibration while the VALS set is used purely for performance
assessment (and never for calibration/training). The sample percentages in CALS, UNLS, and VALS are 10%, 50%,
and 30%, respectively. The percentages 10%, 50%, and 30% account for 90% of the secondary samples. The remaining
10% will be set aside for purposes of performance assessment when the percentage of CALS samples is enlarged from
10% to 20%. Specifically, in the default case, we will assess performance when the CALS set is small, ie, 10% of the
secondary samples. We will then double the size of {XS, yS} from 10% to 20%.
Secondary samples in SOYS: Only the second 50% of samples from the second instrument will be set aside for the
CALS, UNLS, and VALS sample sets (preserving the same percentages—10%, 50%, and 30% that was used in GOAT).
The first 50% of the samples from the second instrument is ignored (except for SPS, the reason for which is described
in section 5.3). We want to mimic what one observes in GOAT: a separate and nonoverlapping set of primary (first
instrument) and secondary (second instrument) samples. For example, there are 60 samples measured on both instru-
ments. The first 30 samples (50%) on the first instrument (indices 1:30) are the CALP samples. The next 30 samples on
the second instrument (indices 31:60) will be used as the secondary samples. Index sets 31:36, 37:51, and 52:60 corre-
spond to the CALS, UNLS, and VALS sample sets. (Indices 34:36 from the second instrument will be used to enlarge
the CALS sample set from 10% to 20%.)

5.3 Calibration methods and their corresponding sample sets
For PPS, only the CALP samples {XP, yP} are used to build the primary calibration model. For SSPS, only the CALS
set comprises the set of calibration secondary samples {XS, yS}. For GOAT, to get a large enough quorum of secondary
samples to achieve the optimal level of SPS performance, the CALS and UNLS sample sets are combined to form the SPS
calibration model. Forming this secondary calibration model for SPS is the only time the reference measurements for the
UNLS sample set are unmasked. For SOYS, we combine the CALS and UNLS sample sets with the first 50% of the samples
from the second instrument (that are otherwise ignored) to get a large enough quorum of secondary samples for SPS.

The NAR collection of methods (NARP, NARS, and NARE) use both the CALP samples {XP, yP} and UNLS spectra XSU
for calibration. Note that the sample sets in these unlabeled methods are assembled in the inductive mode (the UNLS set
is simply XSU) rather than in the transductive mode (the UNLS set being enlarged to XSU ∪XSV). The benchmark method
LMC and the new FA methods FA-1 and FA-2 use both the CALP samples {XP, yP} and the CALS samples {XS, yS} for
calibration.

5.4 Data splits
Performance metrics (to be discussed in section 5.6) will be measured across 300 random splits of the data. Performance
results over one fixed split of the data are often anecdotal. By using many shuffled splits of the data, we intend to examine
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the sensitivity and robustness of the updating methods to sample perturbations. The sample set proportions for both data
sets (previously described and overviewed in Table 2) are maintained on each of the 300 random splits.

5.5 Tuning parameters
Each updating method has either one, two, or three tuning parameters associated with it. The parameters associated
with each updating method is as follows. Primary predicting secondary, SPS, and SSPS have one tuning parameter k,
the number of PLS latent vectors (“PLS factors” or “PLS LVs”). Local mean centering, FA-1, and FA-2 have two tuning
parameters (k, 𝜆) while the NAR collection of methods (NARP, NARS, and NARE) have two tuning parameters (k, 𝜏).

The number of PLS latent vectors k will range across 30 values: k = 1, 2, … , 30. The penalty parameter 𝜆 will span 50
values in an exponentially decaying fashion: 𝜆1 > 𝜆 > · · · > 𝜆50. The value 𝜆1 corresponds to the largest singular value
of XP (or XS in the case of SPS or SSPS) and 𝜆50 is half the value of the smallest nonzero singular value of XP (or XS). This
exponentially decaying sampling strategy is based upon the recommendation in Hansen.29 We do not want to fix a set of
𝜆 values across both data sets since a given 𝜆 value may overregularize (smooth too much) or underregularize (smooth
too little) model vectors b from different data sets. The 𝜏 values will also span the same set of 𝜆 values. It should be noted
that NARS and NARP rely on the number of loading vectors used to form VSU and VP for respective projections. In these
situations, to simplify the selection of the number of loading vectors used, all rSU − 1 loading vectors are used where rSU
is the rank of XSU. Similarly for XP, all rP − 1 loading vectors are used where rP is the rank of XP. A model vector will be
generated for each set of parameters values: 30 model vectors for PPS, SPS, and SSPS and 1500 = (30)(50) model vectors
for the NAR and FA collections of methods.

The justification for using rP − 1 and rSU − 1 loading vectors for NARP and NARS, respectively, are as follows. In any
situation where the SVD is used to form a projection matrix, eigenvector selection occurs, ie, how many of the full rank rP
or rSU eigenvectors should be used? For example, popular orthogonal projection methods for net analyte signal (NAS) pre-
processing are noted as requiring eigenvector selection. Methods have been developed to address eigenvector selection; see
Vitale et al55 and Malinowski56 and references therein. Such eigenvector selection methods could be used for NARP and
NARS or a simple rule that eigenvectors are included up to 99% of the information.21 Alternatively, the number of eigen-
vectors can be an additional model selection tuning parameter as implemented in recent work with a NARS-type model
updating process.38 However, past model updating work indicated that a small sample subset of full spectral differences
between primary and secondary performs better than LMC (as presented in this paper that utilizes a small subset of sec-
ondary spectra and references values).14 Thus, a small study was undertaken for this paper to assess the degree of changes
in the NARP and NARS R matrices upon each addition of an eigenvector to form the respective projection matrices. We
created SOYS heat maps (not shown) for successive NARP R matrices representing respective correlations between the
rows (samples) and columns (wavelengths) of R. (Similar heat map trends were observed for GOAT for NARS and NARP.)
These heat maps show erratic correlation behavior at early eigenvectors. When the correlations—between the R matrix
constructed from the first i eigenvectors and the R matrix constructed from the first (i + 1) eigenvectors—converge, the
rows (the projected spectra making up R) are not significantly changing, and it is assumed that the full orthogonal spec-
tral differences between the primary and secondary conditions has been captured. (It should be noted that this is the full
orthogonal spectral differences and not the spectral differences based on the same set of samples being measured in both
conditions.) Since we observed that the correlations between successive R matrices were rapidly changing as i increased
from low to intermediate values, it would be difficult to fine tune eigenvector selection to just the right subset. It was
found that the convergence typically occurs in the last 10% of eigenvectors (beyond the 99% information level or variance
explained). Thus, for this work, all eigenvectors up to rP − 1 and rSU − 1 are used to form the NARP and NARS projection
matrices, respectively, in this paper.

5.6 Performance metrics
Two performance metrics will be of interest: root mean square error of validation (RMSEV) and R2 of validation. For a
given model, the RMSEV is computed as

RMSEVAL =

√√√√ 1
nSV

nSV∑
i=1

(
�̂�(SV,i) − 𝑦(SV,i)

)2
, (21)
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where nSV indicates the number of samples in the VALS sample set. The R2 value is the coefficient of determination asso-
ciated with the regression line that fits the scatterplot associated with reference values (x-axis) and prediction estimates
(y-axis). The RMSEV and R2 values will be computed for each tuning parameter set. The following subscripted j indicates
the performance metric computed on the jth model: RMSEVj and R2

𝑗
. For example, the LMC performance on a given

data set would consist of 1500 models, ie, the jth model corresponds to a tuning parameter pair (kik , 𝜆i𝜆), ik = 1, … , 30,
i𝜆 = 1, … , 50.

We are interested in assessing performance trends across the calibration updating methods. For each updating method
and for each data split, we compute the lower quartile (minimum, 25th percentile and median) RMSEVAL values across all
models. Using LMC again as an example, we have 1500 RMSEVAL values for each of the 300 data splits. For performance
assessment purposes, all of this gets distilled to a 300 × 3 matrix Q of lower quartile values:

QRMSE =
⎡⎢⎢⎢⎣

Q(1,0) Q(1,1) Q(1,2)
Q(2,0) Q(2,1) Q(2,2)
⋮ ⋮ ⋮

Q(300,0) Q(300,1) Q(300,2)

⎤⎥⎥⎥⎦ . (22)

The first, second, and third columns of QRMSE correspond to the minimum, 25th percentile (first quartile), and median
(second quartile) RMSEV values, respectively, and each row corresponds to a data split. For example, the (i, 1) entry of
QRMSE denotes the minimum RMSEV value across all 1500 LMC models for the ith data split. We will then examine the
boxplot based upon each column of QRMSE. Each updating method will have their own matrix QRMSE of RMSEV values
and three corresponding boxplots.

The lower quartile values of each calibration updating method will be compared against the lower quartile values of
PPS (the “no updating” scenario). The reason for this is threefold. First, for a given calibration updating method, we want
to see if the bulk of its median RMSEV values fall below the bulk of the minimum RMSEV values for PPS. If so, then we
have confidence in the success of that particular updating method regardless of model selection. (The model selection
procedure that is eventually employed just has to outperform the median model that separates the bottom half [the “best”
models] from the top half [the “worst” models] with respect to RMSEV.) Second, we want to see how the performance
trends for one data set trends hold up against another data set. Does one updating method perform well on one data set
but not another? Third, for a given updating method, we want to observe how close the minimum, 25th percentile, and
median RMSEV values are. One could reasonably expect that the parameters associated with the minimum RMSEV values
are overfitted. However, if the minimum, 25th percentile, and median RMSEV values are still close, then this observation
builds additional confidence for the success of a particular updating method.

For each model associated with an entry in the lower quartile matrix QRMSE, we find its corresponding R2 value and
similarly form a 300 × 3 matrix (denoted QR2) of R2 values. As with the RMSEV values, we will form a boxplot based
upon each column of QR2.

The focus of the paper is to report on performance trends across multiple data splits of the data sets. It should be noted
that no statistical testing was performed between the methods. Statistical testing requires distribution assumptions and
confidence level decisions, and we have chosen not to enter this foray.

6 RESULTS

6.1 Description of performance figures
Figure 1 gives the overall performance assessment for the corn data set with moisture as the analyte. Legend-wise, we will
now discuss what is displayed in Figure 1. The following discussion of the figure description will hold for the remaining
performance figures.

The rows associated with different background colors corresponds to R2 values (top row) and the corresponding RMSEV
values (second and third rows). The third row is the same as the second row except that the third row displays a limited
range in the y-axis—the solid white line in the second row (at a RMSEV height slightly above 3) corresponds to the
maximal height in the third row. The third row is meant to give greater visual detail at the lower RMSEV range. For the
second and third rows, each updating method has three boxplots: left, middle, and right. These three boxplots correspond
to the minimum, first quartile, and median RMSEV values, respectively.
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FIGURE 1 Performance boxplots for SOYS moisture across calibration updating methods. Here, 10% of the secondary samples were used
for the CALS sample set. For each method in the second and third rows, the three boxplots correspond to the minimum, first quartile, and
median RMSEV values. The boxplots in the top row are the corresponding R2 values. CALS, calibration secondary set; FA, feature
augmentation; LMC, local mean centering; NARE, null augmented regression eigenvalue; NARP, null augmented regression primary; NARS,
null augmented regression secondary; PPS, primary predicting secondary; RMSEV, root mean square error of validation; SPS, secondary
predicting secondary; SSPS, small secondary predicting secondary

6.2 Performance trends
The various calibration updating methods examined here are divided into three classes. The first class consists of four
benchmark methods: PPS, SPS, SSPS, and LMC. The NAR collection of methods (NARP, NARS, and NARE) comprise the
second class. The third class of methods are the feature augmentation (FA) methods (FA-1 and FA-2). We like to remind
the reader that the NAR collection does not use labeled secondary samples—the unlabeled secondary spectra XSU are
used instead.

6.2.1 SOYS
Figure 1 reveals traits with moisture being the analyte of interest. The traits are shared by the other analytes of SOYS—see
Figures 2 and 3 for oil and protein, respectively. These shared traits are now discussed.

From the PPS results, some form of model updating is needed. Again, the performance targets for the proposed meth-
ods are the SPS results. With respect to updating methods that use the labeled secondary samples, the benchmark method
LMC and the FA methods perform comparably with FA-2 providing improved results compared to LMC with respect to
low RMSEV and high R2 behavior. The improvement of FA-2 over FA-1 shows the value of including the orthogonal-
ity constraint XPbS = 0 (see Equation 20). All of the updating methods with labeled secondary samples improve on
SSPS, showing that the primary samples are needed. Aside from SSPS, increasing the number of secondary calibration
for {XS, yS} in CALS from 10% to 20% marginally improves performance for some methods, but no meaningful improve-
ment is observed for most methods—see Figure 4A, 4B, and 4C. The lack in improvement does not appear to justify the
doubling of the number of labeled samples (with respect to the expense and laboratory time associated with acquiring
these additional reference measurements).

With respect to the updating methods that use only the unlabeled secondary spectra XSU, the NAR collection gen-
erally suffer from higher RMSEV values. However, what is particularly striking is how comparable the best quartile of
NARE models (ie, the second dark-blue boxplot in the second and third rows) are relative to the best quartile of mod-
els for the LMC and FA methods. This is quite encouraging since only row—the spectral difference between XP and XSU
centroids—was used in the updating (albeit each centroid is a mean of many samples). It is important to note that, across
all data sets, only 50% of the secondary samples were set aside for XSU. However, these are small in terms of absolute
numbers (see Table 2). In many applications, one could easily acquire hundreds or thousands of secondary samples
without reference measurements. In such a case, it is possible that an R matrix constructed from many more unlabeled
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FIGURE 2 Performance boxplots for SOYS oil across calibration updating methods. Here, 10% of the secondary samples were used for the
CALS sample set. See section 6.1 and Figure 1 for the description

FIGURE 3 Performance boxplots for SOYS protein across calibration updating methods. Here, 10% of the secondary samples were used
for the CALS sample set. See section 6.1 and Figure 1 for the description

secondary samples would better characterize the spectral variations associated with the secondary samples, thereby
lowering RMSEV values.

One can sample augment the labeled secondary set {XS, yS} to the linear system associated with the NAR methods:

min
b

(||XPb − yP||22 + 𝜆2 ||XSb − yS||22 + 𝜏2 ||Rb||22) ⇐⇒

[ XP
𝜆XS
𝜏R

]
b =

[ yP
𝜆yS

0

]
. (23)

The results (not shown) qualitatively mimic the performance of LMC. This demonstrates the power of including just
a few reference samples. The information provided by the unlabeled secondary spectra—encoded by the matrix R—is
effectively ignored in favor of the labeled secondary samples {XS, yS}.



14 of 20 ANDRIES ET AL.

(A)

(B)

(C)

FIGURE 4 Performance boxplots for SOYS; A, moisture; B, oil; and C, protein across calibration updating methods corresponding to the
20% CALS sample set. See section 6.1 and Figure 1 for the description
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Figure 5 displays the median RMSEV heatmaps for LMC, FA-2, and NARE, the exemplars for the benchmark, FA and
NAR collection of methods. Note that Figure 5 displays the results for the 10% CALS sample set . (The heatmap for the
20% CALS sample set is not shown since the results are qualitatively similar.) Median RMSEV values for LMC and FA-2
span across log10(𝜆) and k values while for NARE, the RMSEV values span across log10(𝜏) and k values. As viewed from
the median perspective, LMC and FA-2 are robust across a large swath of tuning parameters. Null augmented regression
eigenvalue, on other other hand, requires a large 𝜏 penalty—the weight on the R matrix in Equation 9—to be effective.

The median (Figure 5) has a large number of models with RMSEV around 1.2 and 2, with a good chance such a model
could be selected. For Figure 6, the minimum, most of the models range between 0.29 and 1 RMSEV values indicating we
also have a good chance of finding models in this lower range, perhaps lower than what the median heatmap suggests.
If one develops model selection criteria such that near-optimal models are always chosen (perhaps an over-optimistic
assumption), then Figure 6 is perhaps a more appropriate heatmap. As expected, the first quartile heatmap have lower
RMSEV ranges, intermediate between the median and minimum heatmaps (not shown). The behavior for SOYS oil and
protein are qualitatively similar.

For Figures 5 and 6, there is convergence at lower values of 𝜆 for LMC and NARE. For LMC, note the horizontal
uniformity of the heatmap within the white black boxes on the far right. In these bounding-box convergence regions,
RMSEV depends solely on the number of latent vectors k. (Since the color bar includes the higher RMSEV values associ-
ated with NARE, the heatmap resolution for LMC and FA-2 for the SOYS data set is not as fine-grained.) For FA-2, there
is quasi-convergence. The convergences at small 𝜆 values is a normal trend, and essentially, the values of 𝜆 need to be
small for modeling purposes. For NARE, and unlike LMC and FA-2, lower RMSEVs are obtained for larger values of 𝜆. A
larger weight is likely needed since R consists of only one row. From a regularization perspective, NARE tends to favor
model vectors that are oversmoothed.

FIGURE 5 Heatmaps of median RMSEV values across tuning parameters: 𝜆 versus k for LMC (column 1) and FA-2 (column 2) and 𝜏

versus k for NARE (column 3). Each row corresponds to a data set (and for rows 2, 3, and 4, the corresponding analyte). Here, 10% of the
secondary samples were used for the CALS sample set. The white dotted lines indicate where RMSEV is invariant with respect to the value of 𝜆
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FIGURE 6 Heatmaps of minimum RMSEV values across tuning parameters: 𝜆 versus k for LMC and FA-2 and 𝜏 versus k for NARE

With respect to the performance of LMC and FA-2, two questions arise:

1. How often does LMC outperform and underperform FA-2 across all splits?
2. When the benchmark method LMC does outperform (underperform) FA-2, by how much, on average, does LMC

outperform (underperform) with respect to RMSEV?

To answer these questions, the 300 minimum RMSEV values used to form the respective boxplots for LMC and FA-2
are differenced on a data-split-by-data-split basis:

ΔRMSEVi = RMSEVi
FA-2 − RMSEVi

LMC. (24)

Here, the superscripted i corresponds to the ith data split. This same differencing is applied to the 300 first quartile and
the 300 median RMSEV values.

Local mean centering outperforms (underperforms) FA-2 when ΔRMSEVi > 0(< 0). To answer question 1, we will
simply count how many times the events ΔRMSEVi > 0 and ΔRMSEVi < 0 occur (these frequencies will be denoted
by nOUT and nUND, respectively). To answer question 2, we will compute the average difference in performance. For
ΔRMSEVi > 0 and ΔRMSEVi < 0, we respectively compute

ΔOUT = 1
nOUT

nOUT∑
i=1

ΔRMSEVi and Δ UND = 1
nUND

nUND∑
i=1

ΔRMSEVi.

Figure 7 displays nOUT and ΔOUT as the length and height of a white rectangle—see Figure 7. The same applies to nUND
and ΔUND but with respect to a black rectangle. (The black rectangle lies beneath the x-axis since ΔUND is negative.) The
white and black rectangles associated with the pairs {nOUT,ΔOUT} and {nUND,ΔUND} are computed for each data set and
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FIGURE 7 Comparison trend plots of between FA-2 and LMC. Average difference are plotted on y-axis with negative values indicating
that LMC underperforms FA-2

FIGURE 8 Performance boxplots for GOAT across calibration updating methods. Here, 10% of the secondary samples were used for the
CALS sample set. See section 6.1 and Figure 1 for the description

for each quartile case (minimum, first quartile, and median). The wider the black rectangle is (wider than 150 splits) and
the taller the black rectangle is, the more FA-2 outperforms LMC. For the GOAT and SOYS datasets, FA-2 outperforms
LMC, on average, across all situations. Feature augmentation provides consistent improvement.

6.2.2 GOAT
Figures 5, 6, 8, and 9 display the performance boxplots, median, and minimum RMSEV heatmaps, respectively, for the
fecal goat data set. The GOAT data set shares many of the performance traits with the SOYS data set. As with SOYS, the
FA collection performs the best overall—with FA-2 providing lower RMSEV and higher R2 values; FA variant. Similarly,
the lower quartile of the RMSEV values for NARE are comparable to the benchmark performance of LMC. The trends
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FIGURE 9 The performance boxplots for GOAT across calibration updating methods. Here, 20% of the secondary samples were used for
the CALS sample set. See section 6.1 and Figure 1 for the description

in the performance comparison in Figure 7 for SOYS are similar for GOAT for LMC, FA-2, and NARE. Increasing the
size CALS sample set {XS, yS} from 10% to 20% marginally improves performance for some methods, but no meaningful
improvement is observed for most methods.

7 CONCLUSION AND FUTURE WORK

In this paper, we have created many calibration updating methods that are applicable to a wide range of data sets, espe-
cially those that do not contain standardization samples. Out of all the new calibration updating methods utilizing the
CALS sample set {XS, yS}, the FA-2 variant performs either similar to LMC or provides improvement. In the NAR collec-
tion that exclusively use unlabeled secondary spectra, the NARE variant provides best results and is also parsimonious:
the vertically augmented matrix R only consists of one row. (Although the NARE R = (𝜇P − 𝜇SU)T matrix consists of
only one row, the centroid 𝜇SU does use all available unlabeled secondary samples when constructing the mean.) This
NAR mechanism of calibration updating is simple and powerful. In particular, the full utility of NAR cannot be fully
addressed until many more unlabeled secondary samples are used such that the sample size greatly exceeds the number
of labeled secondary samples (ie, nSU ≫ nS). While NARE with limited unlabeled samples does not perform as well as
FA-2 at the first quartile and median boxplots, this observation is based only on unlabeled data from the secondary sam-
ples. The user needs to assess the trade-off for improving accuracy against spending the time and resources to obtain the
corresponding reference values. Additionally, future work will involve looking at NARE and the other NAR approaches
in the transductive mode for improved models.

The other NAR variants, NARP and NARS, were only studied in the orthogonal projection mode, and using oblique
projections may provide improved models. However, this would require an additional tuning parameter. For example, the
oblique projection R = X(I − 𝛾VSUVT

SU) would require a determination of the tuning parameter 𝛾 . The current work with
NARP and NARS described in this paper uses the default value of 𝛾 = 1.

From the heatmaps shown in Figures 2 and 3, it is clear that model selection is not easy. Specifically, numerous models
exists that predict well including overfitted models at the higher PLS LVs. Ongoing work in our laboratory involves devel-
oping processes for model selection robust to data sets and updating method. Preliminary work has shown that fusion of
multiple measures of model quality has potential.48,57

There are many avenues of exploration in this framework. In particular, we seek a more effective coupling of labeled and
unlabeled secondary samples that improve performance beyond what can be achieved with labeled secondary samples
alone. To date, no studies have been performed characterizing the degree of differences between primary and secondary
before calibration will fail. Such work is also ongoing.
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