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Maintaining multivariate calibrations involves keeping models developed on an
instrument applicable to predicting new samples over time. Sometimes, a primary
instrument model is needed to predict samples measured on secondary instruments.
This situation is referred to as calibration transfer. Sometimes, a primary instrument
model is needed to predict samples that have acquired new spectral features (chem-
ical, physical, and environmental influences) over time. This situation is referred
to as calibration maintenance. Calibration transfer and maintenance problems have
a long history and are well studied in chemometrics and spectroscopy. In disci-
plines outside of chemometrics, particularly computer vision, calibration transfer
and maintenance problems are more recent phenomena, and these problems often
go under the umbrella term domain adaptation. Over the past decade, domain
adaptation has demonstrated significant successes in various applications such as
visual object recognition. Since domain adaptation already constitutes a large area
of research in computer vision and machine learning, we narrow our scope and
report on penalty-based eigendecompositions, a class of domain adaptation meth-
ods that has its motivational roots in linear discriminant analysis. We compare
these approaches against chemometrics-based approaches using several benchmark
chemometrics data sets.
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1 INTRODUCTION

The normal process of building a calibration model typically
requires a large set of samples such that all spectral vari-
ances are included in future predictions. However, once a
calibration model has been built, circumstances can cause the
model to become invalid. For example, instrumental drift or
uncalibrated spectral features appearing in new samples can
occur later in time. Alternatively, an unknown sample could
be measured on an instrument other than the instrument that
the calibration model was built on. For these and other situ-
ations, the instrument must be recalibrated to accommodate
new conditions. In theory, the remedy would be to include a
large number of new calibration samples. In practice, though,
the inclusion of such samples is often prohibitively costly and
lengthy in terms of laboratory time.

In chemometrics, calibration transfer is often synony-
mous with instrument transfer. Samples from the primary

instrument are used to build the original model, while
the secondary samples are from another instrument. How-
ever, appreciable instrument-to-instrument variations almost
always exists, e.g., differences in wavelength resolution and
detector sensitivity. The expression calibration maintenance
corresponds to the scenario where the secondary instrument is
in fact the primary instrument but the samples being obtained
later in time are occurring under different measuring condi-
tions. Depending on the instrument and sample type, other
chemical, physical, and environmental influences can cause
new spectral features to appear later in time. Hence, mecha-
nisms are needed to update the current model to include the
new spectral effects not in the current calibration domain.

In this paper, the aim of calibration transfer and mainte-
nance is to make predictions on new secondary samples. If the
secondary samples are similar to the primary samples, then
one can simply pool all of the samples together and build a
global calibration model. However, if the secondary samples
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are radically different from the primary samples, then one
can ignore the primary samples and build a calibration model
solely on the secondary samples, provided that there are
enough samples. The usual statistical assumption—that the
secondary samples are drawn from the same probability dis-
tribution that governs the primary samples—is at best a useful
fiction for many real-world applications. Although we expect
the secondary samples to be dissimilar (but not that dissim-
ilar) to the primary samples, the primary samples should
provide additional leverage such that an improved prediction
can be obtained for secondary samples.

Calibration transfer and maintenance problems have a long
history and are well studied in chemometrics and spec-
troscopy; see literature1–18 and references therein. In disci-
plines outside of chemometrics (e.g., computer vision, image
processing, text mining, audio, and language processing), cal-
ibration transfer and maintenance problems are more recent
phenomena, and the techniques used to solve these problems
go by different names: domain adaptation, transfer learning,
concept drift, or covariate shift; see literature19–28 and refer-
ences therein. For brevity and clarity, we will heretofore use
the following acronyms to refer to the following:

• CU: Calibration updating. CU will refer to both calibration
transfer and maintenance approaches specific to chemo-
metrics and spectroscopy.

• DA: Domain adaptation. This acronym will be used as an
umbrella term for all CU approaches used in disciplines
outside of chemometrics and spectroscopy.

In DA, data set bias naturally occurs, e.g., recognizing
objects under poor lighting conditions while algorithms are
trained on well-illuminated objects, and facial recognition
when images are trained from frontal poses while the test set
consists of side poses. Although CU and DA share many of
the same problems, the research efforts of these communities
have been largely unaware of each other.

Classification or retrieval algorithms dominate in DA appli-
cations, while regression dominates in most CU settings, e.g.,
prediction of analyte concentrations. Also, the size of the
data sets in these communities is vastly different in scale.
In DA, it is not uncommon for the number and dimension
of the samples to be massive, whereas in CU, the size of
data sets is usually much more modest. As a result, nonlin-
ear methods are usually used in DA applications, while linear
methods generally suffice in most CU scenarios. Moreover,
discipline-specific priors used to eliminate poor or subopti-
mal solutions in DA often have no analogs in CU (and vice
versa). Despite these differences, insights can be gleaned from
the DA literature, providing promising avenues for further
research and effort.

The CU and DA are large areas of research in their own
spheres of influence. As a result, we intentionally narrow
our scope to penalty-based eigendecompositions. Eigende-
compositions describe a class of DA methods based upon
generalized eigenvalue problems (GEPs), which amount

to solving the equation Tv = 𝜆Dv with respect to the
eigenvalue-eigenvector pair (𝜆, v). Note that we are not inves-
tigating the following:

• Methods that require a standardization set.1–5 A standard-
ization set is a common set of samples measured across
2 or more instruments. (It could also be a common set
of samples measured across 2 or more different measur-
ing conditions). Since each standardization sample has
the same reference value across instruments, the variabil-
ity of the spectral measurements should largely reflect
instrument-to-instrument difference. To establish transfer
parameters, the standardization samples also need to be
representative of the entire experimental regime and stable
enough over time between situations in which the standard-
ization is performed. For certain data sets examined here,
the creation of a standardization set is not possible.

• Spectral preprocessing techniques.7,8,11,29–32 These tech-
niques refer to methods (e.g., wavelets and direct piecewise
standardization) that transform the spectra to minimize
domain differences between the primary and secondary
samples without the use of a standardization set.

This is not to say that one cannot use standardization sets
or preprocessing techniques by themselves or in tandem with
eigendecompositions, but those investigations are outside the
scope of this paper.

This paper is organized as follows. Section 2 reviews the
maximization of Rayleigh quotients and the corresponding
generalized eigenproblems that result from this optimization.
We recast the eigenproblem framework of linear discriminant
analysis (LDA) and reappropriate it for CU and DA pur-
poses. Section 3 examines 3 DA-based eigendecompositions
methods and their solution via a GEP. Section 4 describes
the data sets used for algorithm assessment, and Section 5
discusses algorithm implementation and model selection pro-
cedures. Section 6 provides the analyses and comparative
results. Finally, Section 7 concludes the paper.

We now discuss notation. Symbols that are not boldface
represent scalars (x or P). Lowercase and uppercase bold-
face symbols represent column vectors (x) or matrices (X).
All vectors are column vectors unless noted otherwise noted.
The superscripted symbols T and −1 indicate the transpose
and inverse, respectively, of a vector or matrix. The matri-
ces I and 0 and vectors 1n and 0n indicate the identity matrix,
a matrix of 0’s and a column vector of n ones and 0’s,
respectively. The comma and semicolon indicate the horizon-
tal and vertical concatenation (or stacking) of matrix/vector
entries. For example, it will be convenient to represent an
m × n matrix of spectra X by concatenating column vec-
tors X = [x1,x2,… ,xm]T such that xj=[xj1;xj2;… ;xjn] (or
xj = [xj1,xj2,… ,xjn]T) corresponds to the jth spectrum. The
vector y = [y1;y2;… ;ym] (or y = [y1,y2,… ,ym]T) represents
the response variables (e.g., reference values such as ana-
lyte concentrations). In this paper, X(P) = [x(P)

1 , … , x(P)
mP
]T

and y(P) = [y(P)
1 , … , y(P)

mP
]T correspond to mP samples of
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primary spectra and reference values, respectively. Similarly,
X(S) = [x(S)

1 , … , x(S)
mS
]T and y(S) = [y(S)

1 , … , y(S)
mS
]T corre-

spond to mS samples of secondary spectra and their respective
reference values.

2 GENERALIZED EIGENPROBLEMS

Generalized eigenproblems naturally arise in many diverse
fields such as signal processing, pattern recognition, and
machine learning.33–35 These problems involve 2 matrices,
T and D, that are referred to as scatter matrices. These
scatter matrices occur in a Rayleigh quotient R(v) that is
subsequently maximized:

max
v

R(v) where R(v) = vTTv
vTDv

. (1)

MaximizingR(v) results in a vector v that projects the spectra
X onto a desired subspace.

Changing the scale of v (e.g., substituting v with ṽ = 𝛼v)
does not change the value of the Rayleigh quotient R(v) in
Equation 1. The norm of v is not as important as the direc-
tion in which v points in. To avoid the trivial solution v = 0,
one can impose a scalar constraint on v without a qualitative
change in solution. Typically, this constraint imposes a unit
norm on the inner product in the denominator in Equation 1,
and as a result, the optimization problem in Equation 1
becomes

max
v

vTTv subject to vTDv = 1. (2)

Using the standard Lagrange multiplier approach from cal-
culus, the corresponding Lagrangian function ℒ (v) associ-
ated with Equation 2 results in the following maximization
problem (constants omitted):

max
v

ℒ (v) where ℒ (v) = vTTv − 𝜆vTDv. (3)

Setting the gradient of ℒ (v) equal to 0, we obtain the follow-
ing GEP36,37:

Tv = 𝜆Dv. (4)

2.1 Eigenpairs

The Lagrange multiplier 𝜆 in Equation 4 corresponds to a
generalized eigenvalue of the matrix pair (T, D). Although
the maximal eigenvalue 𝜆 also maximizes the Rayleigh
quotient, Equation 4 does have other solutions—the other
eigenvalue-eigenvector pairs (𝜆, v) of (T, D). However, these
other eigenpairs do not correspond to the maximum of the
Rayleigh quotient. In some applications, only the solution pair
(𝜆,v) associated with the maximal eigenvalue is of interest.
For CU purposes, multiple eigenpairs will be of interest,

TVk = DVk𝚲k, (5)

where𝜦k = diag(𝜆1,𝜆2,… ,𝜆k) is a diagonal matrix containing
k eigenvalues (usually the largest eigenvalues but not always)
and Vk=[v1,v2,… ,vk] is a matrix containing the correspond-
ing eigenvectors. The term eigendecomposition will refer to
the numerical process that extracts the eigenpairs (𝜆j, vj),
j = 1,… ,k.

2.2 Motivation from LDA

The eigendecomposition strategies we seek for CU purposes
are inspired by the minimization and maximization strate-
gies of LDA. For example, in the binary classification setting
where the samples in X belong to either the positive class
C+ or negative class C−, LDA seeks to minimize within-class
scatter and maximize between-class scatter,

maximize
{between-class scatter

within-class scatter

}
= max

v
vTDv
vTTv

. (6)

Here, in the LDA context, D and T indicate the between-class
scatter and within-class scatter matrices, respectively38:

D = (𝝁+ − 𝝁−)(𝝁+ − 𝝁−)T where

{
𝝁+ = 1

m+

∑
k∈C+xk

𝝁− = 1

m−

∑
k∈C−xk

(7)

T = T+ + T− where

{ T+ =
∑

k∈C+(xk − 𝝁+)(xk − 𝝁+)T
T− =

∑
k∈C−(xk − 𝝁−)(xk − 𝝁−)T .

(8)

The scalars m+ and m− indicate the number of samples in
C+ and C−, respectively, such that m + +m−=m denotes the
total number of samples in X. The vectors 𝝁+ and 𝝁− are the
mean spectra or centroids associated with the samples in the
positive and negative classes, respectively. The response vari-
ables y= [y1,y2,… ,ym], yi={−1,+1}, are the class labels. The
label yi=+1 (yi=−1) indicates that the ith sample xi belongs
to the positive (negative) class. Once the scatter matrices D
and T are constructed from the samples in X (using the class
information provided by y), one then finds the vector v = [v1,
v2,… ,vn]T that maximizes Equation 6. The optimal v is an
eigenvector of the corresponding GEP Dv = 𝜆Tv and is nor-
mal (or orthogonal) to the discriminant hyperplane separating
classes C+ and class C−. For LDA classification, only this
1 solution—the eigenpair (𝜆,v) associated with the maximal
eigenvalue—is of interest.

2.3 Penalized eigendecompositions

In CU or DA applications, one naturally has 2 classes CP and
CS—the classes whose labels are associated with the primary
and secondary samples, respectively. Unlike the LDA sce-
nario, however, we want to minimize domain scatter while
maximizing total scatter. In the eigendecomposition context,
we want to avoid confusion with LDA-type class separation
since samples could have class associations other than the
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domain associations, ie, within the primary or secondary sets,
samples can have other class associations that one would want
to separate. For example, scatter component analysis (SCA)
combines both class separation and domain scatter for object
and image recognition39:

max
{ Total Scatter + Between-Class Scatter

Domain Scatter + Within-Class Scatter

}
. (9)

However, in this paper where regression largely dominates
the chemometrics setting, we ignore the terms associated with
class separation and instead solve

max
{ Total Scatter

Domain Scatter

}
= max

v
vTTv
vTDv

. (10)

In this paper, the matrices T and D will heretofore indicate
total scatter and domain scatter, respectively. The methods
that we explore next come from the DA literature, but they can
readily be recast into a CU framework. In these methods, the
data matrix consists of both primary and secondary spectra
stacked on top of each other where X= [X(P);X(S)]. Recall that
m = mP + mS, where mP and mS are the number of samples in
the primary and secondary sets.

2.3.1 Total scatter
Most DA algorithms frame total scatter as principal compo-
nent analysis: find an orthogonal transformation matrix Vk
such that variance is maximized and the eigenvectors (loading
vectors using CU nomenclature) have unit length

max
v

vTTv subject to vTv = 1 (11)

across k eigenpairs (𝜆i, vi), i = 1,… ,k. The matrix T is
proportional to the covariance matrix of X:

T = XT
c Xc where Xc = HX, H = Im−

1
m

1m1T
m. (12)

The matrix H is referred to as the centering matrix and is
symmetric and idempotent, ie, HT = H and H2 = H. Maxi-
mizing total scatter in DA algorithms effectively involves the
following expression for T in Equation 10:

T = XT
c Xc = (HX)T (HX) = XTHX. (13)

2.3.2 Domain scatter
In LDA, we seek a projection v that pushes apart samples
from the positive and negative classes. In CU applications,
we seek projections {v1,v2,… ,vk} that pull samples together
from different domain classes, ie, the primary and secondary
samples. Hence, we want to minimize the inner product vTDv
associated with domain scatter:

D = (𝝁(P) − 𝝁(S))(𝝁(P) − 𝝁(S))T . (14)

Borrowing notation from the DA literature, the difference
between the mean vectors 𝝁(P) and 𝝁(S) is often expressed in
terms of the data matrix X:

e(P) = 1

mP
1mP

, e(S) = 1

mS
1mS

, e =
[

e(P)

−e(S)

]
, L = eeT

𝝁(P) = (X(P))Te(P), 𝝁(S) = (X(S))Te(S), 𝝁(P) − 𝝁(S) = XTe.
(15)

The expression for the domain scatter matrix D in Equation 14
can now be more compactly expressed as

D = (𝝁(P) − 𝝁(S))(𝝁(P) − 𝝁(S))T = XTLX. (16)

The structure of D in Equation 16 has consequences with
respect to how one mean-centers the data. In many CU
applications, one commonly mean-centers the primary and
secondary samples separately:

X(P)
c = X(P) − 1mP

(𝝁(P))T , y(P)
c = y(P) − 1mP

ȳ(P),

X(S)
c = X(S) − 1mS

(𝝁(S))T , y(S)
c = y(S) − 1mS

ȳ(S).
(17)

As a result, one can solve the following augmented linear
system of equations for the vector b:[

X(P)
c

𝜏X(S)
c

]
b =

[
y(P)

c
𝜏y(S)

c

]
. (18)

This linear system has been previously proposed for model
updating in CU applications14,40,41 and is well known as gen-
eralized Tikhonov regularization in the numerical analysis
literature.42,43

In Equation 18, the reweighting is performed on the
mean-centered secondary samples. That is, model updating is
largely achieved by first moving the centroids of the primary
and secondary spectra (via separate mean centering) inde-
pendently to the origin and then reweighting the secondary
samples to have the same commensurate scale as the primary
samples. However, in the context of DA applications, if X =
[X(P)

c ;X(S)
c ], then the domain scatter matrix in Equation 16

would trivially yield XTLX = 0. Hence, local mean centering
(LMC) cannot be coupled with the minimization of domain
scatter in DA applications. Instead, we globally mean-center
X via the centering matrix H such that Xc = HX where H is
defined in Equation 12.

At this stage, it will be convenient to introduce 2 acronyms:
LMC and GMC. Local mean centering is already defined in
Equations 17 and 18, where {X(P), y(P)} and {X(S), y(S)} are
separately mean-centered by their respective means. Global
mean centering (GMC), on the other hand, is the same as
LMC except that the spectral and reference means for both the
primary and secondary samples are the same,

X(P)
c = X(P) − 1m𝝁

T , y(P)
c = y(P) − 1mȳ,

X(S)
c = X(S) − 1m𝝁

T , y(S)
c = y(S) − 1mȳ,

(19)

where

𝝁 = 1
m

XT1m and ȳ = 1
m

yT1m (20)

are derived from the pooled primary and secondary samples
X = [X(P);X(S)] and y = [y(P);y(S)]. For both LMC and GMC,
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we solve the same augmented linear system in Equation 18
for the vector b using partial least squares (PLS). Both LMC
and GMC are the CU methods that we will compare against
the DA methods to be defined later on (namely, transfer
component analysis [TCA] and SCA).

An open question remains though: Does minimizing
domain scatter on globally mean-centered data outperform
LMC and reweighting where separate means are used for the
primary and secondary spectra? The answer to this question
is one of the main thrusts of this paper and is a question that
is rarely addressed in the DA literature. It is important to note
that if one is uncertain about the domain membership or label-
ing of a novel spectrum as being primary or secondary, then
LMC is not feasible.

2.3.3 Kernelized Rayleigh quotients
Most DA applications use kernel formulations of the Rayleigh
quotient where the vector v in Equation 10 is expressed as a
linear combination of the spectra

v = XTu where u = [u1, u2, … , um]T . (21)

In the optimization literature, the variables v and u are
referred to as the primal and dual variables, respectively. As a
result, if we substitute Equation 21 into Equation 10, then we
obtain a Rayleigh quotient in terms of the dual variables:

max
u

R(u) where R(u) = uTTu
uTDu

and

{ T = KHK
D = KLK
K = XXT

.

(22)
The matrix K = XXT is called the kernel matrix. In actu-
ality, K is a linear kernel matrix. In the entire discussion
that follows, one can replace the linear kernel matrix with
a variety of nonlinear kernel matrices that are commonly
used in the DA literature. However, this paper will use linear
kernels since the number of samples in most chemometrics
data sets is typically not large enough to justify the use of
nonlinear methods.

The GEP associated with the maximization of the Rayleigh
quotient in Equation 22 is formed by setting the corresponding
Lagrangian function ℒ (u) (as defined in Equation 3) to 0.
The resulting GEP is

TUk = DUk𝚲k. (23)

The eigenvector in the primal space can then be recovered via
the relation vi = XTui, i = 1,… ,k.

3 DA-BASED EIGENDECOMPOSITION
METHODS

In this section, we will discuss 3 DA methods,

• TCA,44

• SCA,39 and
• primal SCA (PSCA),

which use penalty terms or constraints to create penalized
variants of GEPs. In the discussion to follow, the total scat-
ter matrix T and domain scatter matrix D in TCA and SCA
are defined using the dual variables Uk = [u1, u2,… ,uk]T and
the linear kernel matrix K as in Equation 22. Primal SCA, on
the other hand, uses the primal counterparts of the total and
scatter matrices as defined in Equations 13 and 16.

TCA and SCA follow the same basic protocol for obtaining
the eigenvector matrix Uk: solve the GEP across k eigen-
pairs {(𝜆i,ui)}k

i=1 associated with maximizing its correspond-
ing Rayleigh quotient R(u). After obtaining Uk, the primal
variables Vk are recovered via the relation Vk = XTUk
and Vk serves as the transformation matrix that maps the
n-dimensional calibration spectra onto a lower k-dimensional
representation

Zk = KUk = XVk, (24)

where domain scatter is minimized. In the case of PSCA,
obtaining Vk is more direct: obtain the eigenpairs {(𝜆i, vi)}k

i=1
by maximizing R(v) and use Vk=[v1, v2,… ,vk]T to map the
spectra X onto a lower dimension via Z = XVk.

Once the dimension-reduced data set Zk is obtained, it can
be fed into any multivariate calibration algorithm to con-
struct a regression model for subsequent prediction on novel
secondary spectra X̄(S) (which will be similarly dimension
reduced via Z̄k = X̄(S)Vk). In this paper, PLS is used as the
multivariate calibration method on Zk, and all k PLS latent
vectors will be used. Numerically, since Zk has k columns
(and presumably not rank deficient), then a subsequent PLS
regression on {Zk, y} using all k latent vectors is theoretically
equivalent to ordinary least squares regression on {Zk, y}.
We want to distinguish between (a) PLS using fewer than k
latent vectors and (b) PLS using all k latent vectors (equiva-
lent to ordinary least squares). Using option (a) would entail
a further reduction to k′

dimensions (k′
<k), and as a result,

3 parameters would have to be tuned (𝜏; k, the number of
eigenvectors kept from the eigendecomposition; and k′

, the
number of latent vectors associated with PLS regression).
Using option (b), the option we use here, maintains consis-
tency across both the CU and DA methods. That is, the only
2 parameters of interest are 𝜏 (the penalty parameter) and k
(the number of dimensions in the reduced subspace). In the
case of the DA-based eigendecomposition, k is the number of
eigenvectors kept in the transformation matrix Vk. In the case
of the CU-based linear system of Equation 18, k is the number
of PLS latent vectors.

3.1 Transfer component analysis

TCA was originally proposed for DA applications in Wi-Fi
location and text classification.44 The Wi-Fi data contain
some labeled Wi-Fi data collected in period A (the primary
domain) and a large amount of unlabeled Wi-Fi data collected
in period B (the secondary domain). In the text classification
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scenario, business text data set is categorized to a hierar-
chical structure. Data from different subcategories under the
same parent category are considered to be from different but
related domains. The task is to predict the labels of the parent
category.

The maximization of the TCA-based Rayleigh quotient
R(u)

max
u

R(u): R(u) = uTTu
uTDu + 𝜏uTu

= uTTu
uT (D + 𝜏I)u

(25)

results in the following GEP:

TUk = (D + 𝜏I)Uk𝚲k. (26)

The penalty term 𝜏uTu = 𝜏 ||u||22 in Equations 25 and 26
mitigates the rank deficiency of the domain scatter matrix D.

3.2 Scatter component analysis

The SCA is another eigendecomposition approach developed
for image classification and object recognition.39 However,
the optimization of its Rayleigh quotient

max
u

R(u): R(u) = uTTu
uT𝜏Du

subject to uTKu = 1

(27)
involves a hard constraint on the eigenvectors u instead of
the soft constraint via a penalty term used by TCA. The
SCA also uses an additional parameter 𝜏 that controls the
trade-off between total and domain scatter. The correspond-
ing SCA-based GEP becomes

TUk = (𝜏D + K)Uk𝚲k. (28)

Note that uTKu = 1 in Equation 27 actually imposes a unit
length constraint on the primal vector v = XTu since uTKu =
uTXXTu = vTv = ||v||22 = 1, whereas TCA in Equation 25
actually penalizes the size of dual variables where uTu =||u||2.

Primal SCA: The observation that SCA imposes a unit
length constraint on the primal eigenvectors gives rise to the
primal formulation of SCA. (This was never explored in the
DA literature since nonlinear kernels were only of interest.) If
we rewrite Equation 27 in terms of the primal vectors v and
the primal scatter and domain matrices using Equations 13
and 16, we obtain

R(u) = uTTu
uT𝜏Du

= uT (XXTHXXT )u
uT𝜏(XXTLXXT )u

= vT (XTHX)v
vT𝜏(XTLX)v

= R(v).
(29)

Although maximizing R(u) and R(v) superficially appears
to be the same, numerically, the dual and primal maximiza-
tions can be quite different, especially if the data matrix X =
[X(P);X(S)] is quite ill conditioned, e.g., the spectra are highly
collinear. The GEP associated with PSCA becomes

TVk = (𝜏D + I)Vk𝚲k. (30)

4 DATA SETS

We explore 4 spectroscopic data sets for purposes of model
updating. Each data set is divided into 3 subsets: a calibra-
tion set consisting of primary samples {X(P), y(P)} and a small
number of secondary samples {X(S), y(S)}, a validation set
containing a small number of secondary samples {X(S)

val, y
(S)
val},

and a test set of secondary samples {X(S)
test, y

(S)
test}. We use the

validation set for model selection, ie, the selection of the
penalty parameter 𝜏 and number of latent vectors k. This topic
will be discussed in greater detail in Section 5.2.

We intentionally restrict the number of secondary sam-
ples {X(S), y(S)} in the calibration set to be small relative to
the number of secondary samples in the test set {X(S)

test, y
(S)
test}.

Although not all sources of variation and information can
probed with such a small sample size, we do want to reflect the
reality that reference values are often difficult and/or expen-
sive to obtain. Plus, having a large pool of labeled secondary
samples in the calibration set obviates the need for using CU
or DA strategies for modeling updating in the first place.

For each data set, the calibration, validation, and test sets
describe just 1 partition or split of the data. Results from 1
partition are often just anecdotal. Instead, we will examine
250 additional random splits of the data. In this way, we can
see how robust a given method is against sample perturba-
tions in the data, and how large the performance spread is.
The reshuffling protocol is described in Section 4.5.

4.1 Tablet instrument

The tablet instrument data set consists of near-infrared
(NIR) spectra obtained from pharmaceutical tablets from 2
spectrometers.45 All 650 wavelengths between the spectral
region of 1100 to 1898 nm are used. There is a designated split
of the data whereby the calibration, validation, and test sets
contain 155, 40, and 460 samples, respectively. Each sample
is measured on both spectrometers. The primary and sec-
ondary samples correspond to the samples drawn from the
first and second spectrometers, respectively. For every tablet,
3 response variables are measured: weight, hardness, and
the amount of active ingredient (nominally 200 mg/tablet).
We use the third response variable: typically, one wants to
estimate the amount of active ingredient from NIR spectra.

The primary calibration samples {X(P), y(P)} consist of the
155 samples measured on the first spectrometer in the cal-
ibration set. Since the designated number of samples in the
validation set is 40, we restrict the number of secondary sam-
ples {X(S), y(S)} in the calibration set to be 40 (of 155) as
well. Indices 1, 2,… ,40 from the second spectrometer were
used from the calibration set. (No attempt was made to judi-
ciously select a few representative samples, as is often the
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case with methods that use a standardization set). The val-
idation set {X(S)

val, y
(S)
val} consists of all 40 samples measured

on the second spectrometer in the designated validation set.
The test set {X(S)

test, y
(S)
test} consist of all 460 samples from the

second spectrometer.

4.2 Corn instrument

The corn instrument data set consists of NIR spectra measured
from 3 instruments labeled m5, mp5, and mp6.46 Each sam-
ple was measured on all 3 instruments. Only instruments m5
and mp5 are used here. Model updating was performed using
all 700 wavelengths between the spectral region of 1100 to
2498 nm. The primary and secondary samples are drawn from
the m5 and mp5 instruments, respectively. For every sample,
4 response variables were measured: moisture, oil, protein,
and starch. We used moisture as the response variable.

Since there is no default or designated split of the data into
calibration, validation, and test sets, one was created. The
calibration set consists of the first 40 samples measured on
instrument m5 (indices 1,2,… ,40)—the primary calibration
set {X(P), y(P)}—and the first 4 samples measured on instru-
ment mp5 (indices 1,2,3,4)—the secondary calibration set
{X(S), y(S)}. The validation set {X(S)

val, y
(S)
val} contains 4 samples

(indices 41 through 44) measured on instrument mp5. The test
set {X(S)

test, y
(S)
test} contains 36 samples (indices 45 through 80)

from instrument mp5.

4.3 Tablet batch

The tablet batch data set consists of NIR spectra measured
across 4 different dose types (tablets of 5, 10, 15, and 20 mg)
of a pharmaceutical drug.47 All 404 wavenumbers between
the spectral region of 7400 to 10 507 cm−1 are used. There are
310 samples: 31 batches and 10 tablets per batch. The batches
can be classified into 3 production scales: laboratory, pilot,
and full. In this paper, we restrict our attention to 2 dose types
(tablets of 5 and 10 mg) and to 2 batch scales (laboratory and
full). The primary and secondary samples are drawn from the
laboratory and full batches, respectively. As a result, there are
60 primary samples and 60 secondary samples. Unlike the
tablet instrument and corn instrument data sets, none of the
samples were measured on multiple instruments, ie, there is
no possibility to create a standardization set.

As in the corn instrument data set, there is no default or
designated split of the data. The primary calibration samples
{X(P), y(P)} consist of 60 samples from the laboratory batches:
30 samples from type 1 (5 mg) and 30 samples from type
2 (10 mg). The 60 secondary samples from the full batches
were split into 6 calibration samples {X(S),y(S)} (3 samples
from type 1 and 3 samples from type 2), 6 validation sam-
ples {X(S)

val, y
(S)
val} (3 samples from type 1 and 3 samples from

type 2), and 48 test set samples {X(S)
test, y

(S)
test} (24 samples from

type 1 and 24 samples from type 2).

4.4 Wheat kernel

The wheat data set consists of NIR transmittance spectra.48

The calibration set comprises 415 wheat kernels samples rep-
resenting 43 varieties or variety mixtures from 2 different
locations in Denmark. The test set consists of 108 samples
representing 11 varieties from 1 location. (The test samples
were actually acquired from the calibration samples, but these
samples were stored for 2 additional months before measure-
ment so as to provide a check for temporal drift in the samples
and instrumentation). All 100 wavelengths between the spec-
tral region of 850 to 1048 nm are used. The reference values
correspond to protein content percentage. The primary and
secondary samples are drawn from the 415 calibration and
108 test samples, respectively.

The primary calibration set {X(P), y(P)} contains the 415
wheat kernels in the calibration set. The partitioning of the
108 test set samples into 3 secondary sample sets ({X(S), y(S)},
{X(S)

val, y
(S)
val}, and {X(S)

test, y
(S)
test}) is governed by the fact that the

test set reference values are already sorted in ascending order.
As a result, the subset partitioning will be staggered. The
secondary calibration set {X(S), y(S)} consists of 11 samples
(samples 1, 11, 21,… ,91, 101) of the 108 test set samples.
The secondary validation set {X(S)

val, y
(S)
val} similarly consists of

11 samples (samples 2, 12, 22,… ,92, 102). The secondary
test set {X(S)

test, y
(S)
test} consists of the remaining samples.

4.5 Random splits

In addition to the designated split just outlined for each data
set, 250 additional random splits of the data will be gener-
ated. To facilitate the subsequent discussion of data splitting,
Table 1 gives the number of samples in the calibration, vali-
dation, and test sets across each data set.

For the tablet instrument data set, all of the
samples—separately for each spectrometer—will be pooled
together. The samples for each spectrometer will then be
reshuffled. For the first spectrometer, samples 1 through
155 will be assigned to the primary calibration set {X(P),
y(P)}. For the second spectrometer, samples 1 through 40,
samples 156 through 195, and samples 196 through 655
will be assigned to {X(S), y(S)}, {X(S)

val, y
(S)
val}, and {X(S)

test, y
(S)
test},

respectively. For the corn instrument data set, all of the
samples—separately for instrument m5 and mp5—will be
pooled together. The samples for each instrument will then
be separately reshuffled. For instrument m5, samples 1
through 40 will be assigned to the primary calibration set

TABLE 1 Number of samples in calibration, validation, and test sets

Tablet Corn Tablet Wheat
Instrument Instrument Batch Kernel

Calibration set (X(P), y(P)) 155 40 60 415

(X(S), y(S)) 40 4 6 11

Validation set (X(S)
val , y

(S)
val) 40 4 6 11

Test set (X(S)
test, y

(S)
test) 460 36 48 86
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{X(P), y(P)}. For instrument mp5, samples 1 through 4,
samples 41 through 44, and samples 45 through 80 will
be assigned to {X(S), y(S)}, {X(S)

val, y
(S)
val}, and {X(S)

test, y
(S)
test},

respectively.
For the tablet batch and wheat kernel data sets, the pri-

mary and secondary samples will be separately reshuffled.
For the primary samples, the first 80% of the samples (sam-
ples 1 through 48 for tablet batch and samples 1 through 332
for wheat kernel) will be assigned to {X(P), y(P)}. As in the
tablet instrument and corn instrument data sets, we want each
split to contain a different subset of {X(P), y(P)}. For the sec-
ondary samples, the first 10% (samples 1 through 6 for tablet
batch and samples 1 through 11 for wheat kernel), the sec-
ond 10% (samples 7 through 12 for tablet batch and samples
12 through 22 for wheat kernel), and the remaining 80% of
the samples will be assigned to {X(S), y(S)}, {X(S)

val, y
(S)
val} and

{X(S)
test, y

(S)
test}, respectively.

Each random split preserves the proportion of primary and
secondary samples. In the case of the tablet batch data set, the
proportion of 5- and 10-mg sample types are also preserved.

5 METHODS AND MODEL SELECTION

5.1 Regression methods

In examining each data set, 6 regression methods will be
compared against other: primary predicting secondary (PPS),
LMC, GMC, PSCA, dual TCA (DTCA), and dual scatter
component analysis (DSCA). The PPS is simply the predic-
tion on {X(S), y(S)} by a PLS model built solely from primary
calibration samples {X(P), y(P)}. LMC and GMC are defined
in Section 2.3.2. Using the spectral and reference means
defined in Equations 15 and 20, the prediction on a novel sec-
ondary spectrum x(S) for PPS, LMC, and GMC is expressed
as ŷ = (x(S) − 𝝁(P))Tb + ȳ(P), ŷ = (x(S) − 𝝁(S))Tb + ȳ(S), and
ŷ = (x(S) − 𝝁)Tb + ȳ, respectively.

In summary, the penalized eigendecomposition methods
PSCA, TCA, and SCA use the globally centered data matrices
X(P)

c and X(S)
c in Equation 20 to solve a GEP and subsequently

obtain a transformation matrix of eigenvectors Vk. The matrix
Vk then dimension-reduces Xc = [X(P)

c ;X(S)
c ] via Zk=XcVk,

where Zk and yc are subsequently fed into a multivariate cali-
bration method (in this case, PLS) to obtain a vector b. As in
the GMC case, prediction on a novel secondary spectrum x(S)

is given by ŷ = (x(S) − 𝝁)Tb + ȳ.

5.2 Model selection

All of the methods involve 2 tuning parameters: 𝜏 (the penalty
parameter) and k (the number of latent vectors). Following
the guidelines set out by Hansen,42 the 𝜏 values are cho-
sen in an exponentially decaying fashion where the minimal
and maximal 𝜏 values (𝜏min and 𝜏max) are the smallest and
largest singular values of the coefficient matrix. For example,

in Equation 18, the coefficient matrix is [X(P)
c ;X(S)

c ]. Sixty 𝜏

values of are used such that 𝜏1>𝜏2>…>𝜏60. The number of
latent vectors k ranges at 1, 2,… ,50. Hence, there are N =
(60)(50) = 3000 possible solutions.

We use a fusion rule to combine similarity rankings to
select the tuning parameters.49 Here, the term fusion indicates
the combination of many model quality measures to produce
a final ranking of models. A number of bias and variance
model quality measures are evaluated with the fusion rule so
as to determine a good updated calibration model. For this
study, bias refers to model prediction error, and variance cor-
responds to prediction uncertainty. The goal of the model
quality measures is to assess the degree of overfitting (lower
bias but greater variance or model complexity) versus under-
fitting (greater bias but less variance or model complexity).
Thus, the task of the fusion rule is to identify those models
with an acceptable bias/variance trade-off.

Seven model quality measures are computed on the valida-
tion set {X(S)

val, y
(S)
val}. First, we examine a bias error known as

the root-mean-square error

RMSEi =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2, i = 1, … ,N. (31)

The corresponding R2, slope, and y-intercept obtained from
plotting predicted values against reference values are also
evaluated. We also want to measure model complexity. For
this task, we measure the 2 norm ||b||2 and jaggedness

Ji =

√√√√ n∑
j=2

(
b(i,j) − b(i,j−1)

)2
, i = 1, … ,N, (32)

where b(i,j) is the jth regression coefficient of the ith model.
Another quality measure used is the U-curve defined by the
following:

Ui =
||bi||2 − ||b||min

2||b||max
2 − ||b||min

2

+ RMSEi − RMSEmin

RMSEmax − RMSEmin
, i=1,… ,N,

(33)

where ||b||min
2 and ||b||max

2 indicate the minimal and maximal
2-norms across all N models (the same holds for RMSEmin

and RMSEmin).
All dissimilarity measures are converted into similarity

measures, e.g., R2 becomes 1 − R2. Hence, each vector bi has
7 model quality measures [q1i, q2i,… ,q7i]T associated with it,
where

Q =
⎡⎢⎢⎢⎣

q11 q12 … q1N
q21 q22 … q2N
⋮ ⋮ ⋱ ⋮

q71 q72 … q7N

⎤⎥⎥⎥⎦ (34)
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is a matrix of all model quality measures. For a given model
quality metric (ie, for each row of Q), the model measures
are ranked from best to worst. Each matrix entry qij in
Equation 34 is assigned a rank rij, and a matrix of rankings
is generated:

⎡⎢⎢⎢⎣
r11 r12 … rN
r21 r22 … r2N
⋮ ⋮ ⋱ ⋮

r71 r72 … r7N

⎤⎥⎥⎥⎦ . (35)

The model sums [S1, S2,… ,SN], where Si =
∑7

k=1 rki are com-
puted and the model vector with the lowest sum is deemed the
overall best model.

6 RESULTS

The results are categorized into 2 calibration updating scenar-
ios: calibration transfer and calibration maintenance. For the
tablet instrument and corn instrument data sets, the aim is to
transfer a model developed from 1 instrument and transfer it
to another instrument. The other data sets are more indicative
of a calibration maintenance scenario. In the tablet batch data
set, one builds a model off of the samples associated with the
pilot batch. The aim is then to transfer this model to batches
associated with full production. In the wheat kernel data set,
the validation data set consists of 108 calibration samples that

have been stored for 2 additional months. During this time, the
spectral measurements will likely have acquired new charac-
teristics from sample aging, in addition to possibly acquiring
spectral artifacts from instrument drift.

6.1 Performance metrics

There are many ways to characterize the performance of
various regression methods across the 4 data sets. We will
examine 2 performance merits: the root-mean-square error
of validation (RMSEV) and the R2 obtained by plotting pre-
dicted test set values against reference test set values. In short,
we use RMSEV and R2 as proxies for prediction accuracy and
precision, respectively. As described in Section 4.5, there are
251 splits (the default split plus 250 additional random splits)
of the data, and we compute the RMSEV and R2 values for
each split. As a result, there will naturally be a spread in the
values of these performance metrics.

The motivation for doing many data splits is to ascertain
how robust each method is to sample perturbations in the data.
In particular, we are also interested in comparing the perfor-
mance of the default split with the performance of the random
splits. Oftentimes, the default split is chosen on the basis of
certain design-of-experiment criteria, or perhaps the group-
ing inherent in the default split is simply a consequence of
chronological ordering, e.g., the spectral measurements of the
calibration set occurred earlier than those of the validation set.

FIGURE 1 Boxplots for the root-mean-square error of validation (RMSEV) and R2 values across 251 data splits for various regression methods and data

sets. DSCA indicates dual scatter component analysis; DTCA, dual transfer component analysis; GMC, global mean centering; LMC, local mean centering;

PPS, primary predicting secondary; PSCA, primal scatter component analysis
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With the exception of the wheat kernel data set, the infor-
mation detailing the sampling or collection protocol of the
samples is missing. (This is often the case with most public
domain data sets). For example, based upon prior experience
with the corn instrument data set, we strongly suspect there is
a temporal bias in this data. With very few exceptions, the pre-
diction on the last n samples (80 − n + 1,… ,80) by a model
built from the first 80 − n samples will be worse than the
prediction on a random set of n samples from a model devel-
oped on the remaining samples. Hence, domain bias could
possibly be confounded with the bias associated with sample
acquisition and collection. We would like to measure the mis-
fit in performance (if any) between the default split and the
other 250 random splits. Recall that each random split pre-
serves the proportion of primary and secondary samples, but
the shuffling of the samples should eliminate any bias due to
the sample acquisition in the default split.

Recall that we want to compare the model updat-
ing regression methods—LMC, GMC, PSCA, DSCA, and
DTCA—against PPS (no model updating). Within the model
updating methods, we want to compare the mean center-
ing and sample reweighting CU schemes (LMC and GMC)
against the newer DA-based penalized eigendecomposition

methods (PSCA, DSCA, and DTCA). We want to answer the
following question: Do these newer DA-based methods out-
perform established CU methods in terms of model updating?

6.2 Performance results and spread

In Figure 1, a boxplot of the RMSEV and R2 values is dis-
played for each regression method and for each data set. Each
regression method has its own color. Overlaid on each box-
plot are 2 additional white markers: a circle and a triangle.
The white circle corresponds to the mean, and the white trian-
gle corresponds to the performance value associated with the
default split. Outliers are shown in small light green circles.

6.2.1 Overall trends across regression methods
On average, all model updating methods outperform PPS
(no updating). Within the model updating methods, LMC
and GMC are noninferior to the eigendecomposition methods
(PSCA, DSCA, and DTCA). The primal eigendecomposition
method (PSCA) compares favorably with respect to LMC and
GMC for the tablet instrument and wheat kernel data sets.
For the tablet batch data set, PSCA performs on par with

FIGURE 2 Mean root-mean-square error of validation (RMSEV) and R2 values across 251 data splits for various regression methods and data sets. DSCA

indicates dual scatter component analysis; DTCA, dual transfer component analysis; GMC, global mean centering; LMC, local mean centering; PPS, primary

predicting secondary; PSCA, primal scatter component analysis
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DSCA and DTCA, ie, worse than LMC and GMC. For the
corn instrument data set, PSCA is slightly less precise (via the
R2 metric), on average, than GMC and LMC. Aside from the
tablet batch data set, PSCA performs, on average, the same
as (if not slightly better than) the CU-based methods LMC

and GMC. A summary display of the mean values (the values
associated with the white circles) is shown in Figure 2.

One possible explanation for the poor performance (e.g.,
tablet batch and wheat kernel) of the dual DA-based methods
is numerical: both the total and domain scatter matrices T and

FIGURE 3 For each data set (column) and for each model updating method (row), a scatterplot and histogram of the tuning parameters (log10 and k) is

shown across all data splits. In each scatterplot, the x-axis and y-axis correspond to the values of log10(𝜏) and k, respectively. Likewise, the top and right

percentage histograms indicate the distribution of the log10 and k values, respectively. DSCA indicates dual scatter component analysis; DTCA, dual transfer

component analysis; GMC, global mean centering; LMC, local mean centering; PSCA, primal scatter component analysis
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D in Equation 22 use the kernel matrix K = XXT as input
(as opposed to X in the case of PSCA). The condition num-
ber of K is the square of that of X. In numerical analysis, the
condition number is a measure of numerical instability asso-
ciated with linear inversion and is bounded below by 1—the
larger the condition number, the more numerically unstable
the linear inversion. Hence, DSCA and DTCA are more prone
to suffer from numerically instability, especially in highly
collinear and low-sample-size-high-dimensional settings that
characterize most chemometrics data sets.

6.2.2 Outliers
There are a number of data splits in which performance
is extremely poor across data sets. (For example, see the
RMSEV results in the tablet instrument data set). With respect
to the other methods, the presence of outliers tends to unsur-
prisingly skew the distribution of the performance metrics:
slightly right skewed for RMSEV and left skewed for R2.
Moreover, in many instances, the performance value of the
default split—as indicated by the white triangle—is likewise
an outlier. This suggests that there could be a data set bias
due to sample collection. In this respect, PSCA outperforms
LMC and GMC. In the corn instrument and tablet batch data
sets, PSCA appears to do a reasonable job in mitigating both
domain and sample collection biases.

6.2.3 Tuning parameters
We now examine the tuning parameters that were chosen by
the fusion model selection process in Section 5.2. Recall that
for each of the 251 data splits, 2 tuning parameters were cho-
sen: 𝜏, the penalty parameter, and k, the number of latent
vectors used. As a result, we have 251 (𝜏,k) pairs, which can
be displayed as coordinates. We are interested to see if cer-
tain tuning parameters are preferentially chosen. In Figure 3,
a scatterplot of the values of log10(𝜏) and k is shown for each
data set (column) and model updating method (row). Also,
a percentage histogram indicating the density of each tuning
parameter is shown: the top and right histograms correspond
to log10(𝜏) and k densities, respectively.

Across data sets, there is no strong trend for any method to
preferentially select certain tuning parameters within a given
model updating method. For GMC and LMC, the distribution
shape for the number of latent vectors k is fairly consistent
within a data set. Moreover, the distribution shape for 𝜏 is
mostly right skewed, indicating that a priority is placed upon
reweighting the secondary samples. For the eigendecompo-
sition methods, there is no consistent trend for 𝜏 distribution
within a data set. Overall, the values of the tuning parameter
(𝜏, k) pairs are quite diverse, indicating that parameter selec-
tion is highly sample dependent. Alternatively, this diversity
may be explained by our attempt to simultaneously capture
the variance/bias trade-off across 7 quality measures via the
fusion rule. Capturing the trade-off can be self-conflicting.

Using just 2 quality measures alone (e.g., minimizing Root
Mean Square Error of Cross Validation (RMSECV) and max-
imizing R2) would likely not be enough to achieve consensus
among the models. Our rationale is to seek consensus across
many quality measures rather than a few.

7 CONCLUSION AND FUTURE WORK

Two model updating methods—both CU- and DA-based
methods—were compared. Established CU-based methods
that mean center and reweight the secondary samples are non-
inferior, on average, to DA-based penalized eigendecomposi-
tion methods. Within the CU-based strategies, there is no sig-
nificant difference between LMC and GMC. As a result, one
should opt for GMC since it uses a simpler mean-centering
strategy. This is particularly important in cases where one
does not know in advance (or has difficulty in assigning) the
membership of a sample as being either primary or secondary
in nature. Within the DA-based penalized eigendecomposi-
tion strategies, PSCA—the simplest of the eigendecompo-
sition strategies—was easily the best performer. The dual
eigendecomposition methods DTCA and DSCA are likely not
warranted for small to medium data sets.

With the exception of 1 data set, PSCA performed on par
with LMC and GMC and is a promising target for subsequent
research. At the moment, PSCA is completely unsupervised
in that it does not use the reference values y(P) and y(S) to
construct the eigenvector matrix that transforms the spec-
tra into a lower-dimensional subspace. (It does use domain
labels, ie, samples are categorized into primary and secondary
classes). Future work may incorporate reference values in the
construction of the eigenvector matrix.

Although eigendecomposition methods have had success in
DA applications, it is arguable whether these improvements
have actually come from better algorithms, or from the vast
troves of data available to computer vision researchers and
the improvements in computing power that makes analyzing
these massive data sets feasible. Although the CU methods
presented here are discipline agnostic (they can be applied
to CU problems in chemometrics and spectroscopy or to
DA problems in computer vision, bioinformatics, etc), these
methods are not part of the standard repertoire of most DA
practitioners, and they probably should be. What makes them
relevant to CU problems is also what makes them relevant
to DA problems: these reweighting methods do not require a
standardization set. Using a standardization set requires that
the same samples be measured in both the primary and sec-
ondary conditions, and this has limited utility for both CU and
DA applications. Moreover, from the perspective of Occam’s
razor, the CU-based methods are also simpler to implement
and are computationally faster than most DA methods. These
methods can also be easily “kernelized” in a nonlinear fash-
ion, making them relevant for DA problems involving large
data sets.
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