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Classifying samples into known categories is a common problem in analytical chemistry and other fields. For example,
with spectroscopic data, samples aremeasured and the corresponding spectra are comparedwith existing spectral data
sets of known classification (library sets) to determine the appropriate classification. Presented in this paper is a study of
the simple and well known data analysis processes target factor analysis (TFA) and net analyte signal (NAS). Although
TFA and NAS were originally derived for different purposes in analytical chemistry, they are based on the same
calculation. The library set with the smallest TFA residual (smallest NAS) for a test sample spectrum can be used for
classification purposes. Alternatively and equivalently, this paper uses the smallest angle (poorest selectivity in NAS
terminology) between a new sample spectrum vector and the space spanned by each library loading vector basis set.
The angle classification is compared with classifications by the Mahalanobis distance and k-nearest neighbors. The
measures are evaluated with three spectroscopic data sets consisting of benchmark identification of plastic type
(Raman) and gasoil plant source (ultraviolet) and a new extra virgin olive oil adulterant identification (fluorescence) data
set. A fourth data set is the benchmark archeological data set. The Mahalanobis distance and k-nearest neighbors
generally classify with 2%–40% and 0%–20% decreases in correct classifications, respectively, compared with TFA
(NAS). Results from this study indicate that the simple TFA and NAS processes are useful underutilized classification
and library searching tools. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Part of analytical chemistry deals with classifying samples. For
example, identifying container plastic types on the basis of spectral
measurements is important for recycling purposes. Numerous
approaches are available for classification problems [1–4]. As the
number of potential classes increases for identifying a sample,
the more difficult classification can become. Presented in this
paper is a study evaluating the simple process of orthogonal
projection analysis (OPA) used in target factor analysis (TFA) [5,6]
and net analyte signal (NAS) [7,8] for the new purpose of classifica-
tion. The OPA process can be angular-based and compares a
sample spectrum to a library set of spectra and is further
described in Section 2. Briefly, the approach is to collect a set of
measurements made on a test sample and treat the set as a vector
of measurements, for example, a spectrum or a series of chemical
concentrations contained in the sample. Respective angles are
calculated between this test vector and each corresponding basis
set of vectors spanning each library space of a known class. The
class with the smallest angle is the test sample identity. The OPA
process is applicable in traditional library searching where only
one spectrum is used to represent a chemical for a chemical class;
that is, each chemical library set has only one pure component
spectrum of the respective chemical.

Orthogonal projections are common in analytical chemistry. In
addition to TFA and NAS, examples using OPA include
preprocessing spectral data to remove nonanalyte information [9],
peak purity assessment [10,11], identification of interferences
[12,13], and quality control assessment [14]. To date, the authors
are not aware of the OPA process used as a single classification
merit. The method of soft independent modeling of class
analogies [1,15] as described in [1] includes OPA in conjunction
with the Mahalanobis distance (MD).
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The OPA format of comparing a sample spectrum vector with a
matrix of spectra is related to another angular approach that com-
pares a matrix of spectra to another matrix of spectra [16]. This
other method was originally applied to studies of educational
achievements in different student groups and has since been
applied to compare different sampling seasons [17] and library
searching second-order data sets, for example, spectrochromato-
grams [18]. Presented in this paper is proof that the angle is
equivalent to OPA angle when the test matrix of spectra is
replaced with a test sample vector.
In this paper, the OPA angle merit is compared with the MD

classification approach [1–3], also commonly used for outlier
detection [1,2,19]. Classification by k-nearest neighbors (KNN) [1–4]
is additionally compared. The three classification methods are
tested on four data sets consisting of three benchmark data sets:
archeological [20], plastic [21], and gasoil plant identifications
[22]. An extra virgin olive oil (EVOO) adulterant identification data
set [23] is also evaluated. These data sets range from well-defined
clusters in principal component analysis score plots to situations
with nonunique overlapped clusters.

2. MATHEMATICS

A test sample vector is denoted as the w� 1 vector y, for w mea-
sured values, for example, a spectrummeasured atwwavelengths.
A class library set is symbolized by the m�w matrix X composed
of m samples measured across the w variables. The transpose
operation is indicated by a superscript t.
Although each library set does not typically have the same

number of samples, the samples making up a library set need to
span the variances making up the class. For example, spectra
measured on samples of a specific plastic type (essentially pure
component spectra) should capture the instrument profile as well
as perhaps temperature effects. As another spectral example, if the
goal is to identify an impurity present in a product, then each
impurity spectral library set could span a concentration variance of
that impurity. Described following is OPA in the TFA and NAS
frameworks. The reader is referred to [1–4,19] for information on
MD and KNN.

2.1. Orthogonal projection analysis

The orthogonal projection of the test sample vector y onto a
space spanned by a library matrix X is obtained by

y� ¼ I� Pð Þy (1)

where I is the w�w identity matrix, P represents a class
projection matrix that projects onto the corresponding X, (I�P)
denotes the projection orthogonal to the span of X, and
y *denotes the resultant vector from the orthogonal projection
of y. The vector y * can also be considered the residual vector
after removing that part of y described by X. Plotted in Figure 1
is a characterization of the orthogonal projection operation.

To obtain respective library class projection matrices P, each
particular library class matrix X is decomposed by a singular
value decomposition (SVD) X=USVt where U represents the
m� k matrix of left singular vectors (eigenvectors of XXt) with
k being the mathematical rank of X (min(m,w)), S symbolizes
the k� k diagonal matrix of singular values on the diagonal,
and V denotes the w� k matrix of right singular vectors
(eigenvectors of XtX). Henceforth, the vectors in V shall be
referred to as loading vectors. The loading vectors are used to
calculate a projection matrix by P=VVt. Because there is a total
of k loading vectors for a particular X, there are up to k projection
matrices for that X. Therefore, the success of OPA depends on
the number of loading vectors used to form P. It should be noted
that the success of MD also depends on the number of loading
vectors used in the MD calculation. Section 4 describes the effect
of the number of loading vectors.

Traditional application of TFA uses a pure component
spectrum of a chemical for y to target test its presence in one
mixture set X where X is commonly obtained for a sample by
processing the sample through a chromatographic system
hyphenated with a spectral instrument. In TFA, the orthogonal
projection is typically not used but the projection of y into X
computed by ŷ ¼ Py instead. If ŷ matches y, that is, the Euclidian
norm (two-norm) ŷ � yk k2 (two-norm of the residual vector) is
small, then the chemical is determined to be present in X.
Equivalently, using the orthogonal projection, the two-norm of
y * (‖y * ‖2) is small if the chemical is present in the sample. To
date, the authors are not aware of the projection geometry
of TFA being used as a simple single classification tool for
multiclass situations.

The OPA process, and hence, TFA, can also be obtained by the
NAS approach. Here, the angle (θ) between y and the V basis set
spanning a particular X is obtained from

sin θ ¼ y�k k2
yk k2

(2)

In the NAS literature, this ratio is known as the selectivity when
X denotes a set of nonanalyte spectra and y represents a sample
spectrum. As used here, the ratio denotes the fraction of the test
sample remaining after the orthogonal projection and varies
from 0 to 1. Ideally, if the test sample belongs to the class, the
ratio is 0 (poor selectivity) and if the test sample does not belong
to the class, the ratio is 1 (the best selectivity and y is unique
compared to X). For classification or library searching purposes,
the ratio for a test sample is determined for each library set
and the ratio closest to 0 would identify the class it belongs to.
Rather than using closeness to 0, the approach here is to use
the angle computed by

y*

ŷ

X

y

θ

Figure 1. Orthogonal projection geometry for orthogonal projection
analysis (target factor analysis and net analyte signal) where ŷ represents
the projection of y (the test vector) into a particular library set X, y *
denotes the orthogonal projection of y, and the angle between y and
the space spanned by X is symbolized by θ.
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θ ¼ sin�1 y�k k2
yk k2

� �
(3)

The class with the smallest θ indicates the class membership
for y.

Equivalently, the cosine of the angle θ in Figure 1 can be
computed by

cos θ ¼ ŷk k2
yk k2

(4)

followed by the appropriate mathematics to obtain θ. The cos θ
value varies from 1 to 0. Ideally, if the test sample belongs to the
class, the ratio is 1, and if the test sample does not belong to the
class, the ratio is 0. The cos θ value is commonly used in tradi-
tional spectral library searching. In this approach, a test sample
spectrum is sequentially compared with individual pure compo-
nent library spectra. The OPA approach described here is not the
same. Specifically, the OPA angle is obtained between the test
sample spectrum and the space spanned by a library set, for ex-
ample, a set of spectra measured for a pure component sub-
stance. In traditional library searching, the angle is obtained be-
tween the test sample spectrum and one pure component
spectrum. The advantage of using a library set of spectra for a
pure component substance is exemplified in the plastic data set.

2.2. Equivalency of OPA to another angular measure

Details of another angle measure are described in [16], and a
brief outline is provided here. Let k be the rank of X, and the
rank of y is 1. When the angular relationship between two data
sets (two matrices of respective data) is sought, the normal
process involves computing individual SVDs of the two spaces
being compared. In this paper, one of the data sets, y, is a vector,
not a matrix. Writing y as a row vector, the SVD yt= uysyvty
results in uy, sy, and vy having dimensions 1� 1, 1� 1, and w� 1,
respectively, with vy being y normalized to unit length
and sy= ‖y‖2. For clarification, the SVD of X is notated as
X=UXSXVt

X where, as with OPA, UX, SX, and VX are w� k, k� k,
and w� k, respectively. In the original development, angles
between respective U and V spaces from the two SVDs could
be computed, for example, angles between the respective U
and V spaces of two spectrochromatograms Y and X [18]. Such
an analysis between spectrochromatograms provides two
angular relationships, one each for the chromatographic (U)
space and the other for the spectral (V) space. Because y is a
vector in this paper, there is only one angle to compute, the
angle between vy (y normalized to unit length) and the space
spanned by VX. Because up to k loading vectors can be used
for VX, there are up to k angles that can be determined.

An angle is obtained by first computing the k� 1 vector
m ¼ Vt

Xvy . Because vy and the vectors in VX have unit length,
then m contains the cos θ between vy and each vector in VX.
An SVD is now performed on m giving m= umsmvtmwith the
one singular value sm, representing the cosine of the angle
between vy and the space spanned by VX, that is, cos θ= sm.
The angle is then obtained from θ= cos�1 (sm). Because m is a
vector, sm= ‖m‖2, and hence, cos θ= ‖m‖2. When used for classi-
fication of a test vector y instead of a test matrix Y, the approach
collapses to that of OPA. This is shown in the following.

The angle relationship given in Equation (4) for Figure 1 can
be expanded to

cos θ ¼
ffiffiffiffiffi
ŷ t

p
ŷ

yk k2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ytVXVt

XVXVt
Xy

p
yk k2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ytVXVt

Xy
p

yk k2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vt
Xy

�� ��2
2

q
yk k2

¼ Vt
Xy

�� ��
2

yk k2
¼ Vt

Xvy
�� ��

2 ¼ mk k2

(5)

resulting in

θ ¼ cos�1 mk k2
� �

(6)

If the test vector y is normalized to unit length for OPA, then
Equation (3) becomes

θ ¼ sin�1 y�k k2
� �

(7)

and the two angles are equal.

3.7. Determining the number of loading vectors

The accuracy of OPA and MD depend on the number of loading
vectors. Numerous approaches have been developed to select
the number of loading vectors [24,25]. The focus of this paper
is not to compare these methods. Instead, the same process is
used for OPA and MD. The procedure used in this study is based
on a newly developed method named determination of rank by
augmentation (DRAUG) [26]. The process determines the
minimum number of loading vectors needed to span a space,
that is, the number needed to properly characterize a library
set X. The DRAUG methodology distinguishes primary loading
vectors (chemical, instrumental, etc.) from secondary loading
vectors (experimental errors) independent of the distribution of
experimental uncertainties. Reference [26] has the details and
Matlab code.

3. EXPERIMENTAL

3.1. Software

Programs for OPA and MD were written by the authors using
MATLAB 2010b (The MathWorks, Natick, MA). The published
program DRAUG was used for determining the number of
loading vectors [26]. The MATLAB Statistics Toolbox was used
for KNN with the Euclidean distance.

3.2. Plastic

The plastic identification data set consists of six classes that are six
of the seven commercial plastic types (numbers 1–6) [21]. Samples
were measured using Raman spectroscopy over the wavelength
range 850–1800 cm�1 consisting of 1093 wavelengths per
spectrum. Classes one through six have 30, 29, 13, 22, 23, and 29
samples, respectively, corresponding to plastic types polyethylene
terephthalate, high-density polyethylene, polyvinyl chloride, low-
density polyethylene, polypropylene, and polystyrene. Data was
used as measured without any preprocessing.

3.3. Archeological

The archeological data set has four classes, a class for a different
obsidian source [20]. This benchmark data set is often used in clas-
sification studies. Samples are measured using X-ray fluorescence
spectroscopy for the analysis of 10 trace metals. The 10 metals
are Fe, Ti, Ba, Ca, K, Mn, Rb, Sr, Y, and Zr. Concentrations of each
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metal ranged from 40 to 1000ppm. The classes have 10, 9, 23,
and 21 samples. Data was used as measured without any
preprocessing.

3.4. Gasoil

The gasoil data set has three classes corresponding to three
gasoil sources [22]. Samples were measured over the wavelength
range of 200–400nm for a total of 572 wavelengths per spectrum.
The classes (sources) have 59, 25, and 30 samples, respectively.
Data was used as measured without any preprocessing.

3.5. Extra virgin olive oil

The EVOO data set consists of six classes [23]. Each class is a set of
EVOO samples that has been adulterated with different oils. The
oils are corn, olive-pomace, soybean, sunflower, rapeseed, and
walnut oil. In each of the classes, adulterant concentrations range
from 0.5% to 95% with 31 samples measured in each class except
for the sunflower oil class that has 30 samples. Samples were
measured using synchronous fluorescence spectroscopy across

the wavelength range 250–400nm at Δ20-nm difference. Each
spectrum is measured over 151 wavelengths. Data was used as
measured without any preprocessing.

3.6. Cross-validation classification process

Leave one out cross-validation (LOOCV) was used to test each of
the three methods [1,2]. Briefly, for a particular data set, a test
sample is removed from a library set. The OPA angle and MD are
computed for the removed sample relative to the library set it
belongs to and all other library sets in the particular data set. The
angle and MD values are obtained from one loading vector to
the minimum library rank defined by the library set of the
corresponding data set with the smallest rank. The sample is
replaced, and the process repeats until each sample in a library
set has acted as the test sample. The process is then repeated for
each library set in the data set. The same LOOCV process was used
for KNN using the Euclidean distance with majority vote and
varying the number of neighbors from 1 to 11.

It is important to note that LOOCV is not used to determine
the number of loading vectors for OPA and MD. The DRAUG
approach is used for this purpose. The LOOCV is also not used
to determine the best number of neighbors to use in KNN. In this
case, the best number of neighbors is not determined, and only
classification trends are studied by varying the number of
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Figure 2. The principal component analysis characterization of the plastic
data set. (a) Score plot using the first two principal components and
(b) scree plot showing the cumulative fraction of total variance explained
for each plastic-type library. Plastic types are (blue, circle) type 1, (green,
upside down triangle) type 2, (magenta, x) type 3, (cyan, square) type 4,
(red, asterisk) type 5, and (black, diamond) type 6. PC, principal component.
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Figure 3. (a) Overall accuracy values for all plastic types using classification
methods (green, circles) orthogonal projection analysis and (blue, circles)
Mahalanobis distance. (b) Overall k-nearest neighbors accuracy (blue), sensitiv-
ity (dash green), and specificity (dot red).
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neighbors. These trends are compared with classification results
from OPA and MD as well as the trends obtained by varying the
number of eigenvectors for OPA and MD. As described in the
experimental section, some of the library sets are small (9, 10,
and 13 samples), and hence, LOOCV is used.

3.7. Classification assessment

The classification performance [27,28] of each method was
assessed on the basis of the counts of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) as
the number of loading vectors range from one to the minimum
overall library rank for a particular data set. If a sample is

classified belonging to a library set and it belongs to the class,
it is a TP. If a sample is classified as not belonging to a library
set and it does not belong to the class, it is a TN. If a sample is
classified as belonging to a library set and it does not belong
to that class, it is an FP. Lastly, if a sample is classified as not
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Figure 4. The receiver operator characteristic plot for the plastic data set.
Classification methods are denoted by (green squares) orthogonal projection
analysis and (blue asterisks) Mahalanobis distance. (a) All loading vectors and
(b) zoom of (a). Numbers in (b) represent the number of loading vectors. The
overall receiver operator characteristic plot across all plastic types for each
method is shown.
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Figure 5. The principal component analysis characterization of the archeo-
logical data set. (a) Score plot using the first two principal components (PCs)
and (b) scree plot showing the cumulative fraction of total variance explained
for each source library. Sources are (blue, circle) source 1, (red, asterisk) source
2, (cyan, square) source 3, and (green upside down triangle) source 4.

Table 1. Accuracy, sensitivity, and specificity values for the plastic data set

Library
plastic1

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

OPA MD OPA MD OPA MD

Type 1 (9) 100 94 100 83 100 97
Type 2 (9) 100 97 100 93 100 99
Type 3 (4) 100 85 100 54 100 91
Type 4 (6) 100 86 100 59 100 92
Type 5 (9) 100 78 100 35 100 87
Type 6 (11) 100 98 100 93 100 99

Values are broken down by each library set (plastic type).
OPA, orthogonal projection analysis; MD, Mahalanobis distance.
1Values in parentheses are determination of rank by augmentation loading vector number rounded to the nearest whole number.

K. Higgins, J. H. Kalivas and E. Andries

wileyonlinelibrary.com/journal/cem Copyright © 2012 John Wiley & Sons, Ltd. J. Chemometrics 2012; 26: 66–75

70



belonging to a library set and it does belong to that class, it is an
FN. Classification performance is then evaluated by the accuracy
term [28,29] computed by

accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ (8)

for the respective number of loading vectors or neighbors.
In addition to plotting the accuracy as a function of the

number of loading vectors or neighbors, the receiver operator
characteristic (ROC) plot can be used to graphically present the

classification behavior as the number of loading vectors or
neighbors vary. The ROC plot shows the separation ability of a
binary classifier by iteratively setting the classifier thresholds
[30,31]. For the studies presented in this paper, an ROC plot is
obtained by plotting the TP rate (sensitivity, SE) against the FP
rate (1-specificity, SP) for each set of loading vectors or neighbors
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Figure 6. (a) Overall accuracy values for all archeological classes using
classification methods (green, circles) orthogonal projection analysis
and (blue, circles) Mahalanobis distance. (b) Overall k-nearest neighbors
accuracy (blue), sensitivity (dash green), and specificity (dot red).
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Figure 7. The principal component analysis characterization of the
gasoil data set. (a) Score plot using the first two principal components
(PCs) and (b) scree plot showing the cumulative fraction of total variance
explained for each source library. Sources are (blue, circle) source 1, (red,
asterisk) source 2, and (green, upside down triangle) source 3.

Table 2. Accuracy, sensitivity, and specificity values for the archeological data set

Library
source1

Accuracy
(%)

Sensitivity (%) Specificity (%)

OPA MD OPA MD OPA MD

Source 1 (2) 100 80 100 60 100 87
Source 2 (4) 100 100 100 100 100 100
Source 3 (4) 100 98 100 96 100 99
Source 4 (3) 100 100 100 100 100 100

Values are broken down by each library set (source).
OPA, orthogonal projection analysis; MD, Mahalanobis distance.
1Values in parentheses are determination of rank by augmentation loading vector number rounded to the nearest whole number.
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where SE and SP are computed by

SE ¼ TP= TPþ FNð Þ (9)

SP ¼ TN= TN þ FPð Þ (10)

In this study, OPA angle and MD thresholds are not varied. As
noted previously, respective classification of a sample in this
paper is based on the library set with the smallest angle, smallest
MD, and majority vote of nearest neighbors. Thus, threshold

values for the OPA and MD ROC plots are the number of
loading vectors.

4. RESULTS AND DISCUSSION

Accuracy, SE, and SP are tabulated classwise for OPA and MD on
the basis of the number of loading vectors determined by DRAUG.
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Figure 8. (a) Overall accuracy values for all gasoil classes using
classification methods (green, circles) orthogonal projection analysis
and (blue, circles) Mahalanobis distance. (b) Overall k-nearest neighbors
accuracy (blue), sensitivity (dash green), and specificity (dot red).

Table 3. Accuracy, sensitivity, and specificity values for the gasoil data set

Library
source1

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

OPA MD OPA MD OPA MD

Source 1 (11) 100 100 100 100 100 100
Source 2 (8) 95 89 92 84 96 92
Source 3 (11) 98 82 97 73 98 87

Values are broken down by each library set (source).
OPA, orthogonal projection analysis; MD, Mahalanobis distance.
1Values in parentheses are determination of rank by augmentation loading vector number rounded to the nearest whole number.
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Figure 9. The principal component analysis characterization of the extra
virgin olive oil data set. (a) Score plot using the first two principal components
(PCs) and (b) scree plot showing the cumulative fraction of total variance
explained for each source library. Adulterant oils are (blue, circle) corn, (red,
asterisk) olive-pomace, (green, upside triangle) rapeseed, (cyan, square)
soybean, (magenta, x) sunflower, and (black, diamond) walnut.
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The overall OPA and MD accuracies for each data set are also
plotted as a function of the number of loading vectors. Because
no method is used to identify the optimal number of neighbors
for KNN, the overall accuracy, SE, and SP are plotted for each data
set. The focus of the paper is not to evaluate the best way to deter-
mine the number of eigenvectors, number of nearest neighbors, or

the best way to perform classification. The primary goal is to assess
the ability of OPA to act as a simple stand-alone classification tool
given the same circumstance for all data sets.

4.1. Plastic

Shown in Figure 2 are the score and scree plots from principal
component analysis. The score plot in Figure 2a reveals that the
plastic types do not uniquely cluster out within the first two princi-
pal components (PCs). The scree plot in Figure 2b for each library
set of spectra identifies over 90% of the variation being captured
with the first two PCs, and the first PC providesmost of it. The scree
plot is shown for each library set because the number of loading
vectors for OPA and MD are library set specific. In [21], score plots
show unique clusters only after preprocessing the data with
second derivatives. Simple classification tools could then be used
including KNN. As Figure 2 reveals, using the raw data shouldmake
the classification more difficult.

Shown in Figure 3a are the accuracy plots for OPA and MD as
the number of loading vectors vary. From Figure 3a, it is
observed that MD is never able to achieve 100% accuracy,
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Figure 10. (a) Overall accuracy values for all extra virgin olive oil adulterants
using classification methods (green, squares) orthogonal projection analysis
and (blue, circles) Mahalanobis distance. (b) Overall k-nearest neighbors accu-
racy (blue), sensitivity (dash green), and specificity (dot red).

Table 4. Accuracy, sensitivity, and specificity values for the
extra virgin olive oil data set

Library oil1 Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

OPA MD OPA MD OPA MD

Corn (8) 98 89 93 68 99 94
Olive-pomace (4) 100 92 100 77 100 95
Rapeseed (6) 93 88 81 65 96 93
Soybean (6) 100 93 100 80 100 96
Sunflower (6) 97 87 90 61 98 92
Walnut (4) 99 84 97 51 99 90

Values are broken down by each library set (adulterant oil).
OPA, orthogonal projection analysis; MD, Mahalanobis distance.
1Values in parentheses are determination of rank by
augmentation loading vector number rounded to the nearest
whole number.
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Figure 11. Extra virgin olive oil score plot as in Figure 9 except that points
are now color coded to the respective adulterant concentration as indicated
in the Figure. PC, principal components.

Table 5. Minimum adulterant concentration correctly
classified for the extra virgin olive oil data set

Library oil1 Minimum adulterant
concentration (%)

OPA MD

Corn (8) 1.74 14.91
Olive-pomace (4) 0.85 14.53
Rapeseed (6) 15.50 20.64
Soybean (6) 1.05 17.06
Sunflower (6) 4.03 18.62
Walnut (4) 0.82 21.23

Values are broken down by each library set (adulterant oil).
OPA, orthogonal projection analysis; MD, Mahalanobis distance.
1Values in parentheses are determination of rank by
augmentation eigenvector number rounded to the nearest
whole number.
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whereas it is possible with OPA. The ROC plot in Figure 4 also
shows that MD does not classify as well as OPA. For example,
11 and 12 loading vectors are used (12 is the maximum avail-
able) with MD, whereas OPA uses two and three loading vectors
to obtain the similar TP and FP rates. As a reminder, Figure 4
deviates from a traditional ROC plot that monotonically increases
as the FP rate increases. Hence, only points are shown using the
number of loading vectors for the ROC threshold values.

Tabulated in Table 1 are the accuracies, sensitivities, and
specificities broken down by each library set (plastic type) at
the number of loading vectors determined best by the DRAUG.
As expected from Figures 3a and 4, OPA outperforms MD. For
MD, Figures 3 and 4 indicate that all the loading vectors should
be used to obtain the best accuracy. However, the MD accuracy
with all the loading vectors is still not as good as OPA.

The overall accuracy, SE, and SP plot for KNN as the number of
neighbors vary is shown in Figure 3b. Figure 3b reveals that regard-
less of the number of neighbors, the accuracy is worse than OPA. In
[21], spectra need to be preprocessed by second derivative in
order for KNN to correctly classify all plastic samples. Because no
preprocessing was performed on the plastic Raman spectra in this
study, the simple OPA approach appears to be more useful.

Lastly, in previous work with this data set, a traditional library
search with cos θ was used where each plastic sample spectrum
was matched to one representative plastic-type spectrum from
each library set. The results were deficient. A similar approach
was used without second derivative preprocessing in this study.
Specifically, rather than using a representative spectrum from each
library set, individual cos θ values were instead obtained in the
LOOCV process between the test sample spectrum and the spectra
making up each library class. The classwisemean cos θ values were
compared, and the library set with mean cos θ value closest to 1
was identified as the test sample plastic type. With this approach,
the results were even worse (not shown), and hence, traditional
library searching is not applicable.

4.2. Archeological

Score and scree plots shown in Figure 5 indicate that the third and
fourth classes are well separated from each other and the first and
second classes. However, the first and second classes slightly over-
lap. The first two PCs characterize over 90% of the concentration
information with most of that coming with the first PC. Displayed
in Figure 6a is the accuracy plot for OPA andMD. The accuracy plot
reveals a small difference from the plastic accuracy plots in that
OPA degrades as more loading vectors beyond four are used while
MD continues to improve. Listed in Table 2 are the results based on
the DRAUG-determined number of loading vectors. Because
DRAUG identifies a small number of loading vectors as best for
each library class, OPA outperforms MD. If a different loading vec-
tor selection approach were used [24,25], it may be that a greater
number would be identified and MD would now perform slightly
better. Again, the focus of this paper is not to compare methods
for determining the number of loading vectors. Trends in the ROC
plots follow that of the accuracy plots. Specifically, the TP and FP
rates for OPA degrade after four loading vectors are included.

The overall accuracy, SE, and SP plots for KNN as the numbers of
neighbors vary are shown in Figure 6b. The Figure indicates that
class identification by KNN is not significantly affected by the
number of neighbors until larger numbers are used. This probably
stems from the good class separation shown in Figure 5a. All three
approaches work equally well with this data set.

4.3. Gasoil

The score plot in Figure 7a shows that class clustering is poor. As
with the previous two data sets, the scree plot in Figure 7b
specifies that over 90% of the spectral variance is described by
the first two PCs for each class. The accuracy plots in Figure 8
and tabulated values in Table 3 demonstrate that OPA again out-
performs MD. Similar to the plastic data, the accuracy plots in
Figure 8a show that MD does not do as well as OPA regardless
of the number of loading vectors. Unlike the plastic and archeo-
logical data, 100% accuracies by OPA are not obtained for the
classes. Figure 8b reveals that KNN does not classify as well as
OPA or MD regardless of the number of neighbors.

4.4. Extra virgin olive oil

Clustering of the adulterants is poor as demonstrated by the
score plot in Figure 9a. Similar to the previous three data sets,
the scree plot in Figure 9b shows that over 90% of the spectral
variance is described by the first two PCs. Accuracy plots in
Figure 10a and tabulated values in Table 4 pattern those of the
gasoil data demonstrating that OPA again outperforms MD. For
OPA, the poorer performance with rapeseed oil is due to the
lower SE value. Similar observations can be made for the low
accuracy values with MD. The accuracy plots in Figure 10a show
that MD does not do as well as OPA regardless of the number of
loading vectors. The KNN results plotted in Figure 10b reveal that
KNN does not perform as well as OPA and MD regardless of the
number neighbors used.
The EVOO data is different from the other three data sets in

that adulterant concentration values are available. Plotted in
Figure 11 is the same score plot in Figure 9a except the points
are color coded to respective adulterant concentrations. Listed
in Table 5 are the minimum adulterant concentrations that could
be correctly classified. The concentrations range from 0.85% to
15.50% for OPA and from 14.53% to 21.24% for MD. The adulter-
ant with the worse accuracy for both methods is rapeseed oil.
Samples incorrectly classified are those in the lower-concentra-
tion range. Otherwise, adulterants can be accurately classified
at the lower concentrations with OPA, a desired ability in the
EVOO adulteration problem.

5. CONCLUSION

This paper showed that the OPA methods of TFA and NAS are
essentially the same with TFA being residual based and NAS is
angle based. Results from this study on a variety of data sets
demonstrated that the OPA in TFA or NAS format generally
outperforms MD and KNN, conventional approaches to classifi-
cation problems. When score plots do not mark clear clusters,
the TFA and NAS measures always performed better than
MD and KNN. The OPA approaches, MD, and KNN require
selection of tuning parameters. From the results, it appears that
DRAUG performs well at this task for OPA and MD. The focus
of the paper is not on evaluating the abundance of methods
to identify the optimal tuning parameters. Instead, accuracy
trends were also plotted across the tuning parameters. From
these plots, it was ascertained that even if the optimal set of
tuning parameters were determined, the OPA process performed
best overall.
The OPA process can be generalized to Nth-order data [18,32].

Thus, the TFA and NAS are also generalizable to Nth-order data.

K. Higgins, J. H. Kalivas and E. Andries
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The focus in this paper is on a vector for the test sample being
projected orthogonally (or into) a library set (a matrix).
Lastly, none of the data was preprocessed in any way. From

previous work with the plastic data set, it was necessary to
preprocess the Raman spectra with second derivatives to
correctly classify plastic samples. With OPA, 100% correct
identification was possible without preprocessing. Additionally,
in previous work with the plastic data set, a traditional
library searching approach used cos θ to match each sample
spectrum to a representative library spectrum, and the results
were not acceptable. Similar poor results were obtained in
this study with a traditional library search using raw spectra
indicating the advantage of using OPA with a set of library
spectra for a chemical substance.
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