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Tikhonov regularization (TR) is a general method that can be used to

form a multivariate calibration model and numerous variants of it exist,

including ridge regression (RR). This paper reports on the unique

flexibility of TR to form a model using full wavelengths (RR), individually

selected wavelengths, or multiple bands of selected wavelengths. Of these

three TR variants, the one based on selection of wavelength bands is found

to produce lower prediction errors. As with most wavelength selection

algorithms, the model vector magnitude indicates that this error reduction

comes with a potential increase in prediction uncertainty. Results are

presented for near-infrared, ultraviolet–visible, and synthetic spectral

data sets. While the focus of this paper is wavelength selection, the TR

methods are generic and applicable to other variable-selection situations.

Index Headings: Tikhonov regularization; Wavelength selection; Variable

selection; Multivariate calibration.

INTRODUCTION

Multivariate calibration models used to analyze spectroscop-
ic data have the general form

y ¼ Xb ð1Þ

where X contains m calibration samples measured at n
wavelengths, b is an n 3 1 model vector, and y is an m 3 1
vector containing the analytical information for the analyte,
such as concentration. To predict future samples, Eq. 1 must
first be solved for b, typically accomplished mathematically by
b̂ ¼ Xþy, where Xþ is a generalized inverse of X. There are
several approaches to calculating Xþ, the most common of
which are ridge regression (RR), partial least squares (PLS),
and principle component regression (PCR).1–3 The method of
RR is actually a form of Tikhonov regularization (TR)4,5 as
further described in the Mathematics section. With an estimate
of b, a new sample spectrum is predicted for its analyte
concentration by ŷ¼ xtb̂, where x denotes a column vector of
the spectral responses.

While the methods of RR, PLS, and PCR can be used with
all wavelengths measured (full spectral methods where n . m),
reduced prediction errors are common when care is taken to
select wavelengths spanning useful analyte predictive infor-
mation.6–23 However, this prediction error reduction comes
with a tradeoff of potential prediction variance infla-
tion.15,18,22,24,25 The methods of RR, PLS, or PCR can be
used when wavelengths are selected such that n � m or n , m.
When the latter is true, the method of multiple linear regression
(MLR) can also be used.1–3

Methods of wavelength selection are usually one of two
modes. One is to select individual wavelengths and the other is

to determine wavelength intervals (bands).13,21,23 Wavelength
selection algorithms such as genetic algorithms or simulated
annealing commonly necessitate lengthy iterative sequential
processes involving wavelength selection, model forming
using RR, PLS, or another method, and prediction testing of
the selected wavelengths.6,14–16 These and other optimization
algorithms often require user-set operating parameters. Altering
these parameters for a specific algorithm can result in different
subsets of wavelengths being selected and, hence, the dilemma
of selecting wavelengths with chance correlations.13,17–19 The
likelihood of this dilemma occurring increases as the ratio of
wavelengths to samples increases.20

A common approach to wavelength selection is to rank
wavelengths according to a merit that reflects importance and
then using an empirically determined cutoff to retain the final
set.6–8,21,26,27 One measure for ranking is the magnitude of
coefficients in a full-wavelength model vector, such as would
be obtained from PLS. In this case, multiple bands of
wavelengths are commonly selected, i.e., adjacent wavelengths
often obtain nearly equivalent model coefficients. References 6,
21, 23, and 28 recently reviewed many of these methods as
well as interval PLS.29

An alternative to wavelength selection algorithms are
variants of TR with built-in wavelength selection processes.
These variants of TR select wavelengths and build models
simultaneously where individual wavelengths and/or multiple
bands of wavelengths can be selected. Basically, the full-
wavelength TR model coefficients can have values at or near
zero. These wavelengths have nearly no affect on prediction
and are essentially considered non-selected wavelengths.

Because TR models are formed in a systematic process, the
L-curve approach is useful to determine the final wavelength-
selected model.3–5,30 The L-curve approach to meta-parameter
selection is well documented. Briefly, a measure reflective of
prediction variance is plotted against a prediction-bias
diagnostic and the best set of wavelengths are those for models
in the corner of the resulting L-curve, i.e., models with an
acceptable bias/variance tradeoff. Many wavelength selection
algorithms only use a prediction bias information criterion to
identify acceptable wavelengths, i.e., the prediction-bias
diagnostic is used to guide the algorithm in selecting
wavelengths. Algorithmic optimization of only a bias diagnos-
tic such as the root mean square error of calibration (RMSEC)
or root mean square error of validation (RMSEV) typically
results in over-fitting.13,22,31–33 The TR wavelength-selection
variants require determination of a model meta-parameter
(tuning parameter) for an acceptable bias/variance tradeoff.
This is no different than other biased modeling methods such
as PLS or PCR in full-wavelength modes or in wavelength-
selection studies requiring a meta-parameter determination to
identify the final model.
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Studied in this paper are three variants of TR used to form
models with full wavelengths or selected wavelengths
(individual wavelengths and/or wavelength bands). The L-
curve is used to select the final models. The three TR
approaches include (1) a model vector two-norm (L2)
minimization criterion for a full-wavelength model, (2) a
model vector L2 minimization criterion that includes a priori
information to weight model coefficients favoring selection of
multiple wavelength intervals, and (3) a model vector one-
norm (L1) minimization criterion that may or may not include a
priori information to weight model coefficients favoring
individual wavelength selection. Simulated spectral data are
assessed to verify algorithm operations. Following this,
ultraviolet–visible and near-infrared spectral data sets are
evaluated.

MATHEMATICS

Ridge Regression. Ridge regression model vectors for Eq. 1
obtained by TR are those that satisfy

minðjjXb� yjj22 þ k2jjbjj22Þ ð2Þ

where jj�jj indicates the vector norm and the subscript 2 defines
the 2-norm (L2), also termed the Euclidean norm, and k is the
meta-parameter controlling the weight given to the second term
relative to the first term. The 2-norm for b is computed by jjbjj2
¼ ðRn

i¼1 b2
i Þ

1=2
. For Expression 2, RR models are obtained by

varying the k meta-parameter and computing respective models
using

b̂ ¼ ðXtXþ k2IÞ�1Xty ð3Þ

where I denotes the identity matrix.
The well documented L-curve approach is valuable in

determining a value for k and, hence, the final model.3–5,30 The
L-curve has also been used to determine the number of basis
vectors for PLS and PCR,3,34 variable selection for MLR,30 and
in TR calibration maintenance and transfer studies.35–37

To form the RR L-curve and select k, model vector 2-norms
(the greater the magnitude, the greater the likelihood of over-
fitting and increased uncertainty in the prediction) are plotted
against the respective RMSEC values (a bias indicator). In such
a plot, an L-shaped curve is formed and the better models
reside in the corner region of the L-curve with acceptable
tradeoffs in the plotted criteria. Other model diagnostics, such
as R2, can be plotted.34

Tikhonov Regularization in L2 (TR 2). A more general
form of Expression 2 found useful for calibration maintenance
and transfer35–37 is

minðjjXb� yjj22 þ k2jjMb� yMjj22Þ ð4Þ

where M and yM represent a set of spectra and analyte values
measured under conditions different than the calibration
samples in X and y. When M ¼ I and yM ¼ 0, Expression 4
reduces to RR in Expression 2 and TR is said to be in standard
form.4 A key variant of Expression 4 is

minðjjXb� yjj22 þ k2jjMbjj22Þ ð5Þ

The M matrix has been set to derivative operators in
Expression 5 for computing a smoothed model vector38 and
M has also been set to a diagonal matrix with diagonal

elements being spectral noise estimates of the respective
wavelengths.38,39 Using spectral noise estimates is a form of
wavelength selection as noisy wavelengths obtain model
coefficients at or near zero.

This approach of wavelength selection is again studied in
this paper for comparison to using a full-wavelength RR
determined model vector on the diagonal of M where the ith
diagonal element is 1/jb̂ij for the ith RR model wavelength
coefficient. The idea is that using a priori information about
expected model coefficient magnitudes and, hence, possibly a
measure of importance, a greater emphasis can be put on key
wavelengths (bands) and less emphasis on those wavelengths
with near-zero or small RR model coefficients; therefore, a
better model vector should result. Other studies have found it
useful to select wavelengths based on the magnitudes of PLS
model coefficients.7–9,26 Because the spectral noise structure is
not always known, using a full-wavelength model vector on the
diagonal of M is more feasible.

Using Expression 5 will henceforth be referred to as TR 2 in
this paper. When M¼ I in Expression 5, TR 2 will be referred
to as RR for distinguishing the full-wavelength form of TR.
Computation of the models is obtained from the following

b̂ ¼ ðXtXþ k2MtMÞ�1Xty ð6Þ

and the L-curve approach is used to determine k.
Tikhonov Regularization in L1 (LASSO TR). Another

general form of TR found useful in calibration maintenance
and transfer studies is

minðjjXb� yjj22 þ sjjMb� yMjj11Þ ð7Þ

where the subscript 1 indicates the vector 1-norm (L1) and s
represents the weight given to the second term.35,37 The 1-norm
for b is computed by jjbjj1 ¼ Rn

i¼1 jbij. If only wavelength
selection is desired, then Expression 7 is simplified to

minðjjXb� yjj22 þ sjjMbjj11Þ ð8Þ

where, as with Expression 5, M will be set to a diagonal matrix
with spectral noise structure estimates or a previous RR model
vector (1/jb̂ij). When M¼ I, Expression 8 further reduces to the
variable selection method known as the least absolute
shrinkage and selection operator (LASSO),2,40 albeit the
approach was developed earlier.41,42 When M in Expression
8 is set to a diagonal matrix (M 6¼ I), the minimization has
been termed adaptive LASSO.2,43 Using Expression 8 in this
paper will be referred to as LASSO TR whether M¼ I or M is a
diagonal matrix with either the spectral noise structure or 1/jb̂ij
from a RR model.

Tikhonov regularization in the LASSO format with M ¼ I
has been used for wavelength selection and found to produce
lower prediction errors than full-wavelength models.11,12 In
Ref. 12, the L-curve approach with the L1 norm of the model
vectors was used instead of the L2 norm to determine an
acceptable model. Such an L-curve will be used in this study.
Reported in this study is the first application of LASSO TR
with M 6¼ I for the specific intent of wavelength selection.

The least angle regression (LAR) algorithm44 is one of
several algorithms that can be used for LASSO. At each
iteration, a non-zero model vector coefficient in b is added to or
removed from the model vector in the previous iteration. The
value s ¼ 0 forms the classical least squares solution (model
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vector in the last iteration of the LAR algorithm). In this paper,
the LAR algorithm is used to solve Expression 8 with the
modification that the columns of X are not scaled to mean zero
and standard deviation of one (autoscaled) as originally
suggested for LAR.44 It was found that with autoscaled data,
inappropriate wavelengths are selected, i.e., wavelengths with
the best sensitivity are not selected for the data sets used in this
paper as all wavelengths are seen to have equal sensitivity after
autoscaling. When M ¼ I, the LAR algorithm can be directly
used as this is LASSO. However, when M is a diagonal matrix,
then processes described in Refs. 4, 30, and 45 are used to
transform the data and Expression 8 is now written as

minðjjX̄b̄� ȳjj22 þ sjjb̄jj11Þ ð9Þ

which can now be solved by the LAR algorithm. The bar
indicates transformed data and the LAR-estimated model
vector ˆ̄b must be transformed back to the estimated model
vector b̂ that is used to obtain predicted concentrations. While
this transformation process is new to using LASSO TR, the
transformation has been used with TR 2, PLS, and PCR in
order to obtain smooth model vectors using derivative
operators for M. The transformation has also been applied
with penalty weights in M based on spectroscopic noise.38 The
transformation process was also recently used with TR written
as Expression 7 for calibration maintenance and transfer.35,37

EXPERIMENTAL

Apparatus and Algorithms. MatLab 7.8 (The Math Works,
Natick, MA) programs for RR, TR 2, and LASSO TR
algorithms as described in the Mathematics section were
written by the authors. All programs were run on an Intel Core
2 Quad personal computer.

Data Sets. Two simulated data sets are studied to test the
algorithms and understand how the algorithms work, i.e., what
type of wavelengths are the TR variants selecting (selectivity
versus sensitivity). These two simulated data sets have
previously been used.12,38,39 A near-infrared spectroscopic
data set also previously studied12 is evaluated in this paper.
Also assessed is a visible spectroscopic inorganic data set. All
samples are mean centered relative to the calibration samples in
X and y. As in previous work, the simulated and near-infrared
data sets are split by first sorting samples according to
concentration magnitudes in y and then every other sample was
placed into the validation set, with the remaining samples
forming the calibration set. The same procedure was followed
for the inorganic data set except all replicate spectra for a
sample are placed in the validation set and similarly for the
calibration set.

Simulated Set 1. The simulated wavelength selection data
set used in Refs. 12, 38, and 39 is again examined in this study.
The broad-banded spectral data set is based on a Gaussian
curve to simulate the pure-component analyte spectrum at unit
concentration over 50 wavelength units while using a second
Gaussian curve to simulate an overlapping pure-component
interferent spectrum at unit concentration (see Fig. 1a).
Random concentrations ranging from 0 to 1 over 66 samples
are used to form respective mixture spectra from the product of
concentrations with pure-component spectra. Random homo-
scedastic noise from a normal distribution with a zero mean
and standard deviation of one was added to spectra at 1%
maximum peak height of the respective mixture spectra

followed by additional noise at 3% maximum peak height to

mixture spectra from wavelengths 20 through 30 (the spectral

overlap region).

Simulated Set 2. The simulated wavelength selection data

set from Ref. 12 is also reexamined in this study. Narrow-

peaked pure-component spectra at unit concentration were

created using Gaussian peaks five wavelength units wide with a

one-wavelength baseline separating each peak across 61

wavelengths (see Fig. 2a). Analyte peaks are centered at every

sixth wavelength from 4 to 52. Interferent peaks are centered at

FIG. 1. Simulated set 1 model vectors using RR or TR 2 (solid lines) and
LASSO TR (dotted line). (a) M ¼ I (RR), (b) diagonal of M set to the RR
model vector (TR 2), and (c) diagonal of M set to the spectral noise structure
(TR 2). Pure-component spectra at unit concentration without noise added for
the anlayte (solid line) and the interferent (dash line) shown in (a).
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wavelengths 22, 28, 34, 40, and 52, producing four peaks with
perfect selectivity for the analyte, centered at wavelengths 4,
10, 16, and 46. Sixty-six sample concentrations for both
analyte and interferent were created from the absolute values of
random numbers with a normal distribution of a mean of zero
and a standard deviation of one. Mixture spectra are the
product of the concentrations with the pure-component spectra.
Random heteroscedastic noise with a normal distribution of
mean zero and standard deviation of one was added to the
mixture spectra at 1% of respective wavelength spectral values.

Inorganic. The inorganic data set is a three-component
system of Co II, Cr III, and Ni II described in Ref. 46. Based on
a three-level, three-factor calibration design, 26 samples were
prepared. Five replicate spectra were obtained for each sample
in randomized blocks creating 128 spectra after removing two
spectra as outliers due to an offset. Absorbances were measured
from 350 to 650 nm at 2-nm intervals with a diode array
spectrophotometer, yielding spectra with 151 wavelengths.
Pure-component and mixture spectra are shown in Fig. 3. The
standard deviation at each wavelength for each spectrum is also
provided. For the purposes of this study Cr was analyzed. The
noise structure for M is the mean of the provided calibration
standard deviations.

Corn. The corn data set as used in Ref. 12 is reexamined in
this study and consists of 80 corn samples with reference

moisture values.47 Spectra were measured from 1100 to 2498
nm at 2-nm intervals on a near-infrared spectrometer. Every
tenth recorded wavelength was used, yielding 70 wavelengths.

RESULTS AND DISCUSSION

Simulated Set 1. When using M ¼ I, values tabulated in
Table I show that LASSO TR produces a lower RMSEV than
RR. This comes with a tradeoff with a potential increase in
prediction variance as indicted by the increase in the model 2-
norm of the regression vector, which agrees with previous
work on this data set.38,39

When coefficients from a full-wavelength RR model are
used as 1/jb̂ij for the diagonal elements of M, results presented
in Table I reveal that TR 2 reduces the prediction error
compared to using M ¼ I for RR. Additionally, prediction
results from TR 2 are improved over LASSO TR with M¼ I or
the diagonal of M set to the same full-wavelength RR model.
Compared to the RR model vector shown in Fig. 1a, the model
from TR 2 plotted in Fig. 1b based on the diagonal of M set to
the RR model vector is more similar to the LASSO TR model
vectors plotted in Figs. 1a and 1b with M¼ I or the diagonal of
M set to the RR model vector, respectively. Thus, TR 2 is able
to eliminate unnecessary wavelengths, creating a model vector
similar to the wavelength selected LASSO TR models. Figures
1a and 1b also show that there is little difference in the LASSO
TR model vectors with M formed as the identity matrix or as
the diagonal matrix.

FIG. 2. Simulated set 2 model vectors using RR or TR 2 (solid lines) and
LASSO TR (dotted line). (a) M¼ I (RR) and (b) diagonal of M set to the RR
model vector (TR 2). Pure-component spectra at unit concentration without
noise added for the anlayte (solid line) and the interferent (dash line) in (a). An
offset of 0.3 has been added to the analyte for visual clarity.

FIG. 3. (a) Pure-component spectra of Co (solid line), Cr (dashed line), and Ni
(dotted line) and (b) mixture spectra.
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As noted in the Experimental section, the spectral noise
structure is known and was used as a diagonal for TR 2 and
LASSO TR. Table I shows the results and discloses
improvement in the predictive ability for TR 2 and little to
no improvement for LASSO TR. From model vectors plotted
in Fig. 1c, it is ascertained that TR 2 with the noise structure in
M generates a model similar to those obtained from LASSO
TR in Figs. 1a, 1b, and 1c except more of the selective less
sensitive wavelengths are now included in the TR 2 model
vector. The inclusion of these wavelengths is probably why this
TR 2 model provides the lowest prediction errors.

From the RR model vector in Fig. 1a, wavelengths relative
to the analyte are non-zero, including the overlap region with
excessive noise. In Figs. 1a, 1b, and 1c for LASSO TR, model
vectors are more restrictive and focus on the most sensitive and
selective wavelengths. Thus, LASSO TR behaves more as an
individual-wavelength selection approach. Intermediate to RR
and LASSO TR is TR 2 with a priori information of the full-
wavelength RR model (Fig. 1b) or spectral noise (Fig. 1c). In
these cases, even more so in Fig. 1c, a band of wavelengths is
selected that primarily includes analyte selective wavelengths
regardless of sensitivity.

Simulated Set 2. Results tabulated in Table II show that RR
performs better than LASSO TR when M ¼ I. As with
simulated set 1, prediction errors improve when the RR model
is used as the diagonal of M for TR 2 and LASSO TR. Model
vectors plotted in Fig. 2 show that compared to the RR model
in Fig. 2a, TR 2 in Fig. 2b with the RR model on the diagonal
of M reduces the model coefficients in the spectral interferent
region noted in Fig. 2a. For RR and TR 2, the focus is on the
selective wavelengths regardless of sensitivity.

The LASSO TR model vectors plotted in Fig. 2 reveal that
only the most sensitive and selective wavelength at position 4
is included. The only difference between using M¼ I and the
RR model on the diagonal of M is the slight increase of the
model coefficient at wavelength 4. As is shown in Table II, all
improvements in prediction errors come with a sacrifice in
potential increases in prediction variance as indicated by the
increased model 2-norms.

Inorganic. Results tabulated in Table III show similar trends
for the two simulated data sets. Specifically, using a priori
information of the spectral noise structure or a RR model
vector on the diagonal of M provides improved prediction
results for TR 2 and LASSO TR compared to using M ¼ I.
From model vectors plotted in Figs. 4a and 4b, it is observed
that RR and TR 2 model vectors are similar in shape. When the
spectral noise structure is included in M for TR 2, the noisy
wavelength regions are now zeroed out (Fig. 4c). The LASSO
TR model vectors plotted in Fig. 4 reveal little differences in
the three models for M ¼ I, M with a RR model on the
diagonal, and M with the spectral noise structure. The LASSO
TR models tend to have selected individual wavelengths and
are outperformed in terms of prediction error by TR 2 with
selection of wavelength bands.

Corn. Results listed in Table IV show improvement in
predictions when using LASSO TR over RR with M ¼ I.
Further respective prediction improvements occur when the
diagonal of M is set to a RR model vector. Model vectors
pictured in Fig. 5 are characterized by comparable trends
observed for the other data sets. A notable difference is LASSO
TR selecting bands of wavelengths, whereas in the previous
data sets the focus is on individual wavelengths. The TR 2 and

TABLE I. Simulated data set 1 results.

Method M RMSEV R2 jjb̂jj2 k or s

RR I 0.0176 0.9951 0.894 0.193
TR 2 RR model 0.0117 0.9984 1.084 0.0468
TR 2 Noise 0.0101 0.9987 1.255 8.08
LASSO TR I 0.0136 0.9977 1.727 0.0145
LASSO TR RR model 0.0125 0.9985 1.636 3.15 3 10�4

LASSO TR noise 0.0126 0.9985 1.643 2.80 3 10�3

TABLE II. Simulated data set 2 results.

Method M RMSEV R2 jjb̂jj2 k or s

RR I 0.0141 0.9995 0.711 0.276
TR 2 RR model 0.0131 0.9995 0.766 0.270
LASSO TR I 0.0284 0.9991 0.959 0.469
LASSO TR RR model 0.0179 0.9992 1.000 2.30 3 10�3

TABLE III. Inorganic data set Cr results.

Method M RMSEV R2 jjb̂jj2 k or s

RR I 1.490 3 10�4 0.9991 0.0158 0.112
TR 2 RR model 1.280 3 10�4 0.9995 0.0184 8.45 3 10�4

TR 2 Noise 1.048 3 10�4 0.9995 0.0175 65.8
LASSO TR I 1.738 3 10�4 0.9987 0.129 1.63 3 10�4

LASSO TR RR model 1.523 3 10�4 0.9849 0.105 1.42 3 10�7

LASSO TR Noise 1.212 3 10�4 0.9994 0.0860 0.0141
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LASSO TR model vectors are similar to those shown in Ref.

12 obtained by using a different LASSO TR algorithm. These

model vectors are also nearly the same as those recently

reported in Ref. 8 that selects and weights wavelengths based

on PLS model coefficient magnitudes.

Simultaneous TR 2 and LASSO TR. A more general form

of TR that incorporates Expressions 4 and 7 as special cases

and, hence, also contains RR, LASSO, and adaptive LASSO as
special cases is

minðjjXb� yjj22 þ k2jjMb� yMjj22 þ sjjEb� yEjj11Þ ð10Þ

where M and E can or cannot be the same matrix. A variant of
Expression 10 has been used for calibration maintenance and
transfer and has been shown to have significant advantages
with regard to robustness of the sample composition in M.35

For only wavelength selection, Expression 10 simplifies to

minðjjXb� yjj22 þ k2jjMbjj22 þ sjjEbjj11Þ ð11Þ

where M and E are diagonal matrices set to the spectral noise
structure, a previous model vector, the identity matrix, or
another weighting matrix. In the special case where M and E
are both set to I, then Expression 11 has been termed the elastic
net.2,48 Similar to Expression 9, the data is transformed to
allow using the LAR algorithm. Before transformation,
calibration spectra and concentrations are first augmented with
kM and 0 to form

XA ¼
X

kM

� �

and

yA ¼
y
0

� �
:

Expression 11 is now written as

minðjjXAb� yAjj22 þ sjjEbjj11Þ ð12Þ

Data in Expression 12 are then transformed as with Expression
8 to be in the format of Expression 9 and the LAR algorithm
can now be used. This augmentation and transformation
process has been used in other studies.35,37

In using Expression 11, the L2 criterion weights the
minimization towards a full-wavelength model in conjunction
with an L1 criterion weighting the minimization towards a
model with wavelengths selected. Studies of this nature were
undertaken and it was found that the models formed prediction
errors intermediate to TR 2 and LASSO TR depending on the
values for tuning parameters k and s in Expression 11. For a
fixed s value and k increasing, the model converges to TR 2;
vice-versa, for a fixed k value and s increasing, the model
converges to LASSO TR. These observations hold true for all
the data sets examined in this study regardless of the structure
of M and E. Thus, this TR variant was not found useful as
either TR 2 or LASSO TR always outperformed it. However,
this variant has been found to be effective in calibration
maintenance and transfer work.35,37

FIG. 4. Inorganic Cr model vectors using RR or TR 2 (solid lines) and LASSO
TR (dotted line). (a) M¼ I (RR), (b) diagonal of M set to the RR model vector
(TR 2), and (c) diagonal of M set to the spectral noise structure (TR 2).

TABLE IV. Corn data set moisture results.

Method M RMSEV R2 jjb̂jj2 k or s

RR I 0.0227 0.9972 91.2 5.88 3 10�4

TR 2 RR model 0.0130 0.9992 106.4 8.70 3 10�3

LASSO TR I 0.0156 0.9988 113.7 2.27 3 10�5

LASSO TR RR model 0.0113 0.9994 114.7 6.25 3 10�5
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CONCLUSION

For all the data sets, some type of wavelength selection was
found to provide reduced predictions errors compared to the
full-wavelength models from RR. Generally, TR 2 with a RR
model on the diagonal of M formed models with bands of
wavelengths selected and lower prediction errors than the
LASSO TR models. When the spectral noise structure is
known, then TR 2 with the noise on the diagonal of M proved
to provide the lowest prediction errors. While no specific
significance tests were applied to the RMSEV values from the
various approaches, the similar trends between data sets
indicate that the differences are relevant. The full-wavelength
RR model vector was used for the diagonal of M in this study;
however, other full-wavelength models could be used such as
from PLS. For the data sets evaluated, the analyte is present at
moderate levels and similar results would be expected for
situations with the analyte at reduced levels.

The focus of the paper is on wavelength selection, but the
TR variants are generic and can be applied to other data sets in
need of variable selection. Additionally, the presented variants
of TR could be applied iteratively. For example, the model
resulting from TR 2 with the diagonal of M set to a full-
wavelength RR model vector could then be used as the
diagonal of M for another TR 2 and so on until convergence of
the model vector. A similar iterative process could be used with
LASSO TR.

An interesting variant of LASSO TR with M ¼ I is
constraining model coefficients to lie within a suitable
polyhedral region.49 A first guess of the polyhedral could be
based on coefficient confidence intervals for a preliminary
model vector obtained by RR or another approach. A method
not tested is to use respective estimated coefficient uncertain-
ties for a full-wavelength model vector as the diagonal of M,
e.g., regression vector coefficient uncertainties for a full-
wavelength RR model.

Another variant of TR is fused LASSO,50 in which two L1

minimizations are included. One is for the model vector to
obtain variable selection and the other is for piece-wise
consistency (variable intervals with constant model coefficient
values). Because the second penalty forces a band of
wavelengths to have constant model coefficient values, the
fused LASSO approach is not expected to provide reduced
prediction errors. However, it may be useful in identifying
wavelength bands and then only these bands are used in RR or
another method. Such an approach was not attempted.
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