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Sparse models by iteratively reweighted
feature scaling: a framework for wavelength
and sample selection

Erik Andriesa,b*

In the past decade, there has been an increase in the use of sparse multivariate calibration methods in chemometrics.
Sparsity describes a parsimonious state of model complexity and can be defined in terms of a subset of samples or
covariates (e.g., wavelengths) that are used to define the calibration model. With respect to their classical counter-
parts such as principal component regression or partial least squares, sparse models are more easily interpretable
and have been shown to exhibit non-inferior prediction performance. However, sparse methods are still not as fast as
the classical methods in spite of recent numerical advances. In addition, for many chemometricians, sparse methods
are still “black-box” algorithms whose internal workings are not well understood. In this paper, we describe a simple
framework whereby classical multivariate calibration methods can be iteratively used to generate sparse models.
Moreover, this approach allows for either wavelength or sample sparsity. We demonstrate the effectiveness of this
approach on two spectroscopic data sets. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In applications such as near-infrared spectroscopy, wavelength
selection (sometimes known as feature or variable selection)
attempts to find only those relevant variables useful for predic-
tion in a multivariate calibration (MC) model. There are many
wavelength selection methods associated with regression-based
MC models [1,2].

Classical MC methods—ridge regression (RR), partial least
squares (PLS), and principal component regression (PCR)—shrink
the size of the regression vector, but they do not totally sup-
press any of the regression coefficients to zero, and as a result,
all wavelengths are used in the prediction of unknown samples.
Recently, sparse methods have become increasingly widespread
in practice because they simultaneously build a regression
(or model) vector and perform wavelength selection by shrinking
many regression coefficients to zero [3–11]. Algorithmic advances
have also made sparse methods computationally tractable for
medium-to-large-sized data sets [12–18]. Despite these advances,
sparse methods are still not as fast and efficient as classical MC
methods, especially in high-dimensional, low-sample-size set-
tings. The intent of this paper is to provide a unified framework
whereby many wavelength selection methods can be recast as an
iterative procedure where off-the-shelf, classical MC methods are
performed per iteration.

The paper is organized as follows. Section 2 discusses wave-
length selection via feature scaling. Section 3 details how feature
scaling can be re-appropriated for sample selection. Section 4
outlines algorithmic implementation and model selection.
Section 5 discusses the results, and Section 6 is the conclusion.

We now describe our notation. Lowercase and uppercase
symbols that are not boldface represent scalars (x or P). Lower-
case and uppercase boldface symbols represent column vectors
(x) and matrices (X), respectively. The superscripted symbols T ,
–1, and + indicate the transpose, inverse, and pseudoinverse,
respectively, of a vector or matrix. A vector of n ones or zeros is
indicated by 1n and 0n, respectively, whereas In represents the
identity matrix of dimension n. A n � d matrix A can be formed
by concatenating its d column vectors A = [a1, a2, : : : , ad],
whereas a diagonal matrix is indicated via the “diag” notation,
for example, In = diag(1n) = diag(1, 1, : : : , 1). The element asso-
ciated with the ith row and jth column of the matrix A will be
denoted in two ways: aij or (A)ij . In this paper, the n � d matrix
X represents calibration spectra of d absorbance measurements
across n samples such that X = [x1, x2, : : : , xn]T where xj =

[xj1, xj2, : : : , xjd]T . The vector y = [y1, y2, : : : , yn]T represents the
response variables (e.g., analyte concentrations) across samples.
Given X and y, one attempts to infer the model or regression

vector b = [b1, b2, : : : , bd]T that relates X to y. In this paper, we
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are interested in the L1 and L2 vector norms that measure the size
or length of a vector x = [x1, : : : , xd]T . The L1 and L2 vector norms
are designated by the symbols ||x||1 and ||x||2, respectively, and
are defined as

||x||1 = |x1| + � � � + |xd| and ||x||2 =
q

x2
1 + � � � + x2

d

We will refer to these norms as the one-norm and two-norm.
It is standard procedure in chemometrics to mean center the

calibration data. If Nx = 1/n (XT 1n) and Ny = 1/n (yT 1n) denote the
mean spectrum and mean response, respectively, of the calibra-
tion samples, then mean-centering is accomplished by

X X – 1n Nx
T and y y – 1n Ny

(The left arrow symbol  indicates that the uncentered
data is being reassigned with its mean-centered counterparts.)
Prediction on an unseen spectrum z is then given by f (z) =
(z – Nx)T b + Ny.

2. WAVELENGTH SELECTION BY
FEATURE SCALING

In spectroscopy, the number of wavelengths is often on the order
of hundreds or thousands, and as a result, there is a need to
distinguish between meaningful and spurious wavelengths. The
search for a predictive set of wavelengths is a computationally
intensive undertaking.

2.1. Least absolute shrinkage and selection
operator methods

Tikhonov regularization (TR) refers to a general class of methods
that shrink regression coefficients by adding a penalty term to
the minimization problem associated with ordinary least squares
regression

minimize h(b), h(b) =
1

2
||Xb – y||22 + Pq(b) (1)

where the penalty term Pq(b) generally takes two forms:

Pq(b) =

8<
:

�||Lb – g||1, q = 1

�2

2 ||Lb – g||22, q = 2
(2)

Here, L and g are a p � d matrix and p-dimension vector, respec-
tively. When L = Id , g = 0d and q = 2 (the two-norm penalty
formulation), Equation (1) corresponds to what is traditionally
known as RR [19,20].

Recently, one-norm formulations (q = 1) have gained traction
in chemometrics. When L = Id , g = 0d , and q = 1, Equation (1)
corresponds to what is commonly known as “the LASSO” [7].
Although both q = 1 and q = 2 result in small-norm regression
vectors, sparse regression vectors arise only when q = 1, L is
diagonal, and g = 0d . The shooting algorithm of Fu gives a simple
and insightful explanation of how the LASSO “zeros-out” regres-
sion coefficients [12]. The general idea of using one-norm penalty
methods for feature selection dates back to the early 1970s in
the geophysics literature [3–6]. Two decades later in statistics,
the idea of using one-norm penalty methods for regression
was popularized by Robert Tibshirani who coined the acronym
LASSO that stands for “least absolute shrinkage and selection

operator” [7]. Although wavelength selection is the primary moti-
vation for using TR when q = 1, variants of the TR formulation
earlier for q = 1 and/or q = 2 have recently been shown to be
effective for calibration maintenance and transfer [21–24].

The original LASSO problem was solved by quadratic program-
ming, a nonlinear optimization procedure whose computational
cost is prohibitive for medium-to-large-sized data sets [7]. To cir-
cumvent this computational bottleneck, algorithmic advances—
coordinate descent methods [12,14], least angle regression
(LAR)[13], projection and sub-gradient methods [17], and mul-
tiplicative updates [18]—have made the LASSO and their vari-
ants feasible for larger problems. Despite these advances, LASSO
methods still do not scale as well as classical MC methods in high-
dimensional settings. Hence, we seek to approximate or mimic
the sparsity-inducing properties of the LASSO by using classical
MC methods within a simple iterative framework.

2.2. Iteratively reweighted feature scaling

Multivariate calibration involves relating y (analyte concentra-
tions) to X (spectroscopic measurements) by

Xb = y + e (3)

via the model vector b. The n � 1 vector e symbolizes normally
distributed errors with zero mean and covariance matrix � In.
Solving Equation (3) (ignoring the e term) is equivalent to solving

ˆˇ = y where ˆ = XF and Fˇ = b (4)

such that F is invertible. For our purposes, we will restrict F to be
a diagonal matrix F = diag(f1, : : : , fd) where fi ¤ 0. After first
solving ˆˇ = y for ˇ in Equation (4), we recover the original
regression vector b via back-substitution: b = Fˇ. The matrix
ˆ = [�1, : : : ,�d] is a rescaled version of X = [x1, : : : , xd] because
�i = xifi , i = 1, : : : , d. Likewise, b is a rescaled version of ˇ
because bi = fiˇi , i = 1, : : : , d. The ith diagonal entry of F reflects
the importance of the ith wavelength. In short, if |fi| � 0, then
the ith wavelength of the spectra can effectively be ignored. If k
diagonal entries of F are sufficiently small (approximately zero),
then ˆ = XF effectively contains k columns that are all approx-
imately zero, and they can be removed from consideration such
thatˆ is of dimension n � (d – k).

Equation (4) can be generalized into an iterative procedure
summarized in Table I. The superscripted k in brackets indi-
cates the current iteration. The ith diagonal element of F[k], or

f [k]
i , is defined as a function of b[k–1]

i , the regression coefficient
from the previous iteratively reweighted feature scaling (IRFS)
iteration. In Sections 2.2.1– 2.2.4, different mathematical expres-

sions for f [k]
i will be defined, and each mathematical expression

will correspond to a distinct wavelength selection algorithm.
The iterative procedure in Table I is initialized by a “guess,”

the regression vector b[0] =
h

b[0]
1 , : : : , b[0]

d

iT
. (For example,

b[0] in Table I can be determined using PLS, PCR, RR, or any
other MC method.) The IRFS scheme in Table I then generates
a sequence of regression vectors b[0], b[1], b[2], : : : such that the
current iterate b[k] is more sparse than the previous one b[k–1].
In Section 2.2.2, we will briefly explain, from the maximum like-
lihood approximation perspective, why the current update is
a smaller-norm (and sparser) version of the previous update.
In Sections 2.2.1– 2.2.4, we will also examine many seemingly
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Table I. IRFS scheme

Step 0: Solve Xb[0] = y by PLS, RR, or PCR for b[0]; set k = 1

Step 1: Form scaling matrix F[k] = diag
�

f [k]
1 , : : : , f [k]

n

�

Step 2: Solveˆ[k]ˇ[k] = y by PLS, RR, or PCR for ˇ[k] whereˆ[k] = XF[k]

Step 3: Recover b[k] using back-substitution b[k] = F[k]ˇ[k]

Step 4: Set k = k + 1 and go to Step 1

IRFS, iteratively reweighted feature scaling; PLS, partial least squares; RR, ridge regression; PCR, principal component regression.

disparate iterative techniques for wavelength selection and see
how they can be unified under the framework of IRFS.

2.2.1. Focal underdetermined system solver

In the signal processing literature, the focal underdetermined
system solver (FOCUSS) algorithm was developed to find the
“best” basis columns of X [25,26]. With respect to this goal, the
following problem was posed:

min ||b||p, (0 � p < 1) subject to Xb = y + e (5)

When p = 0, the zero-norm ||b||p = ||b||0 corresponds to the
count of nonzero components in b. In short, Equation (5) with
p = 0 seeks to solve Xb = y + e with the fewest number of
nonzero regression coefficients—a laudable goal in the context
of wavelength selection. However, minimizing ||b||0 is generally
intractable because it requires an enumerative search across all
possible combinations of regression coefficients. Note that if the
norm of b was extended to the interval 1 � p � 2, then the
FOCUSS problem would have a global minimum [27]. However,
for 0 � p < 1, the FOCUSS problem can have many local minima
[25,26]. Instead of a guaranteed unique solution—located at the
global minimum—having less sparsity when 1 � p � 2, FOCUSS
chooses to have a potentially suboptimal solution with greater
sparsity when 0 � p < 1. FOCUSS makes no attempt to search for
global minima in a minimization landscape with potentially many
local minima.

The solution to Equation (5)—using the notation defined in this
paper—can be shown to have the following diagonal element

f [k]
i =

ˇ̌̌
b[k–1]

i

ˇ̌̌1– p
2

in the scaling matrix F[k] in step 1 of Table I [26]. Since the original
FOCUSS papers [25,26] were published, extensions of FOCUSS
have been developed that allow for slightly different reweight-
ing rules [28,29]. Our interest, however, is in comparing the base
FOCUSS algorithm with other reweighting strategies employed in
chemometrics.

2.2.2. Maximum likelihood approximation

The ordinary RR problem

minimize h(b), h(b) =
1

2
||Xb – y||22 +

�2

2
||b||22 (6)

penalizes regression vectors with large norm such that each
element of b is equally weighted by �. However, suppose we
have a priori information regarding unequal weighting for each

element in b. For example, assume that the regression coeffi-
cients b1, : : : , bd in b are random variables that follow a normal
distribution with probability density function �(b) = const �

exp
�

–1/2bT C–1
b b

�
and are independent and identically dis-

tributed, with Cb the corresponding covariance matrix. Instead of
minimizing h(b) in Equation (6), the maximum likelihood estimate
(MLE) is found by solving

minimize h(b), h(b) =
1

2
||Xb – y||22 +

1

2
bT C–1

b b (7)

or, equivalently, by solving the least squares problem�
XT X + C–1

b

�
b = XT y.

The MLE approach requires a priori estimates of Cb, which
are rarely known in practice. To make the estimation easier,
we assume that the covariance matrix is a diagonal matrix of
variances, that is, Cb = diag

�
�2

1 , : : : , �2
d

�
with �i representing

the spectral noise associated with the ith wavelength. In the
absence of measuring the same spectra repeatedly and calcu-
lating the sample standard deviation, we can instead use the
magnitude of the regression coefficient bi , derived from an initial
least squares estimate, as a proxy for the variance �2

i . The spec-
troscopic premise is that wavelengths with a poor signal-to-noise

ratio will be down-weighted to zero. Let b[0] =
h

b[0]
1 , : : : , b[0]

d

iT

be an initial least squares estimate derived from a standard MC
method such as PLS, RR, or PCR. If the inverse of the diagonal
covariance matrix is expressed as

C–1
b = �2L2 where L = diag

0
@ 1ˇ̌̌

b[0]
1

ˇ̌̌ , : : : ,
1ˇ̌̌

b[0]
d

ˇ̌̌
1
A (8)

then the MLE problem in Equation (7) can be recast in terms of TR
as expressed in Equation (1):

minimize h(b), h(b) =
1

2
||Xb – y||22 +

�2

2
||Lb||22 (9)

Such an approach was successfully used for wavelength selection
[30].

Note that the solution b in Equation (9) is a smaller-norm

version of the initial estimate b[0]. When the magnitude of

the coefficient b[0]
i in Equation (8) is small, the corresponding

diagonal element of L, that is, Lii = 1/
ˇ̌̌
b[0]

i

ˇ̌̌
, is large. As a result, a

large magnitude for the updated coefficient bi in Equation (9) will
be heavily penalized by Lii in the term �2/2 ||Lb||22.5

2
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Using the variable transformations ˆ = XL–1 and ˇ = Lb, we
transform Equation (9) into the standard TR problem [31]:

minimize h(ˇ), h(ˇ) =
1

2
||ˆˇ – y||22 +

�2

2
||ˇ||22 (10)

Equation (10) corresponds to RR. However, there is nothing partic-
ularly special about RR as the baseline least squares solver—one
could also use PLS or PCR. As a result, the MLE approach of
Equation (9) can easily be recast as an IRFS scheme in Table I
where

f [k]
i =

ˇ̌
ˇb[k–1]

i

ˇ̌
ˇ .

Moreover, the MLE scheme can be seen as special case of the

FOCUSS algorithm where p = 0 because
ˇ̌
ˇb[k–1]

i

ˇ̌
ˇ1–p/2

=
ˇ̌
ˇb[k–1]

i

ˇ̌
ˇ.

2.2.3. Adaptively preconditioned partial least squares

Recently, adaptively preconditioned PLS (APPLS) was used
for wavelength selection [32]. In an iterative fashion, APPLS
generates a sequence of regression vectors that become sparser
per iteration and can be written as an IRFS scheme of Table I
where

f [k]
i = �

vuuuuuut

�
b[k–1]

i,j

�2

dX
l=1

�
b[k–1]

l,j

�2
(11)

The subscript j in b[k]
i,j in Equation (11) denotes the jth PLS latent

vector (or component or factor) for the ith regression coefficient
at the kth APPLS iteration. The parameter � in Equation (11) is a
scalar bounded in the interval (0, 1]. The values for both j and �
are determined by cross-validation [32]. In this paper, we set � = 1

because the diagonal elements f [k]
i then have a probabilistic

interpretation: f [k]
i > 0 and

Pd
i=1 f [k]

i = 1.

2.2.4. Binary weighting schemes

The previously mentioned feature scaling schemes— FOCUSS,
MLE, and APPLS—all have diagonal weights F[k] = diag�

f [k]
1 , : : : , f [k]

d

�
that are continuously valued and nonnegative.

However, the value of the weights can be arbitrary. In particular,

if the weights f [k]
i are binary in value (0 or 1), then the trans-

formation ˆ = XF[k] leaves the columns associated with the
unit-valued weights untouched (there is no rescaling for these
columns, whereas the columns associated with the zero-valued
weights are discarded).

Suppose we use a regression technique (such as PLS) to build
an initial regression vector b[0] in which all of the wavelengths
of X are used. We then sort the regression coefficient mag-

nitudes
ˇ̌̌
b[0]

i

ˇ̌̌
in ascending order and remove a proportion of

the wavelengths associated with the smallest values of
ˇ̌̌
b[0]

i

ˇ̌̌
. In

effect, the weights associated with the smallest magnitudes are
zero, whereas the surviving wavelengths have unit weight. Cal-
ibration is again performed using the trimmed feature set, the

magnitudes
ˇ̌̌
b[1]

i

ˇ̌̌
of the next iterate are sorted, and a propor-

tion of the remaining wavelengths is removed. This process is
repeated until there are no more wavelengths left. In the early

bioinformatics literature, this recursive procedure was often
applied to microarray data. (Microarray data sets associated with
cancer studies often consist of a n (patient samples) � d (genes)
matrix of gene expression values.) In particular, linear support
vector machines were used to perform “gene selection” on
cancer-related microarray data sets [33]. In the chemometrics lit-
erature, similar schemes have been invoked using PLS to perform
wavelength selection such as competitive adaptive reweighted
sampling [34]. In these recursive schemes, the proportion of
wavelengths that are removed per iteration has to be fairly large;
otherwise, there would be too many iterations to perform.

For our approach, which we denote as binary weighting
scheme (BWS), we follow a similar convention to competitive
adaptive reweighted sampling whereby the number of wave-
lengths kept decays exponentially per iteration:

N(i) = N0e–ki where k = –
ln(q)

imax

Here, N(i) is the number of wavelengths kept for the ith IRFS
iteration, N0 = d is the number of wavelengths of X, imax is the
maximum number of IRFS iterations, and q is the desired propor-
tion of surviving wavelengths at imax iterations. The proportion
q = 0.01 (or 1% of the original number of wavelengths) is the
default value we use.

3. REPURPOSING ITERATIVELY REWEIGHTED
FEATURE SCALING SCHEMES FOR
SAMPLE SELECTION

In this section, the IRFS schemes from Section 2 will be repur-
posed for sample selection, that is, finding a predictive subset of
samples. Traditionally, weighted least squares procedures have
been used for this purpose, but the IRFS schemes, coupled with
least squares generalizations of support vector regression (SVR),
can effectively perform sample selection as well.

3.1. Weighted least squares

Instead of minimizing 1/2||Xb – y||22 = 12
Pn

i=1 r2
i where

ri = xT
i b – yi is the residual associated with the ith sample,

weighted least squares problems instead solve

minimize h(b), h(b) = ||W1/2(Xb – y)||22 =
1

2

nX
i=1

wir
2
i (12)

where W = diag(w1, : : : , wn). Generally, when one cares about
certain samples more than others (e.g., samples that we expect
to see again or samples whose misfit is costlier), then wi > 1.
Weighted least squares problems perform “sample scaling”
instead of feature scaling because Equation (12) can be rewritten

as the solution to the linear system QXb = Qy + e where QX = SX
and Qy = Sy with S = W1/2 = diag

�p
w1, : : : ,

p
wn
�

being the
sample-scaling matrix that premultiplies X (instead of postmulti-
plying X as in the IRFS schemes). However, to reuse IRFS schemes
for sample selection, we will want to postmultiply a kernel matrix
by a scaling matrix F—this will be discussed in the next section in
the context of SVR.
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3.2. Support vector regression

Support vector regression, like any other regression technique,

strives to find the optimal line/plane-of-fit g(x) = xT b + b0 by
minimizing residuals ri = g(xi) – yi where |ri| is the vertical
distance between the coordinate (xi , yi) and the line-of-fit g(x).
Unlike other regression techniques, however, SVR seeks the best
hyper-slab or corridor that contains most of the data with the line
or plane in the middle of the corridor being deemed the best line-
of-fit (Figure 1). In Figure 1, � is the vertical distance between the
middle black line and the red or blue lines above and below. The
�-value associated with the red lines is smaller than the �-value
associated with the blue line. If � is sufficiently large, then the
corridor (or blue �-tube) will contain all of the data points, that is,
–� � ri � �, i = 1, : : : , n. The simplest (and most naive) SVR is
mathematically described by the following [35]:

minimize
1

2
||b||22 subject to – � � ri � �, i = 1, : : : , n (13)

Equation (13) describes the scenario when all points are within
the �-tube, and such a scenario does not guarantee a good line-
of-fit. The width � between the corridor walls in the �-tube can
be expressed as � = 2/||b||2 [36,37]. To maximize the width � ,
we minimize the two-norm of b. (An excellent discussion and
derivation of the optimization problem associated with SVR, as
well as the support vector machine, can be found in Max Welling’s
Classnotes in Machine Learning [36,37].)

To find a tolerable line-of-fit, we must decrease � in value.
However, as we shrink �, the likelihood that data points will lie
outside the �-tube will increase. As a consequence, one or more
of the constraints –� � ri � � will have to be violated, and provi-
sions allowing for constraint violation will have to be defined. In
the SVR and support vector machine literature, the slack variables

�(1) =
h
� (1)

1 , : : : , � (1)
n

i
and �(2) =

h
� (2)

1 , : : : , � (2)
n

i
are used for

this purpose. If the ith sample (xi , yi) is within the tube, then the

corresponding slack variables � (1)
i and � (2)

1 are both zero—there
is no need for slack. If (xi , yi) lies above the tube, then slack is

only needed above the corridor: � (1)
i > 0 is the vertical distance

between (xi , yi) and the upper corridor wall, whereas � (2)
i = 0.

Similarly, if (xi , yi) is below the tube, then � (2)
i > 0 and � (1)

i = 0.

Mathematically, the SVR problem allowing for slack is given by

minimize 1
2 ||b||22 + P(�(1), �(2))

subject to –� – � (1)
i � ri � � + � (2)

i ,

� (1)
i � 0, � (2)

i � 0, i = 1, : : : , n

(14)

The penalty term P(�(1), �(2)) in Equation (14) stipulates that we
want to minimize the amount of “corridor violation.”

Different mathematical expressions for P(�(1), �(2)) generate
different SVR formulations [38,39]. We use the following two-
norm penalty formulation

P(�(1), �(2)) = C2
nX

i=1

��
� (1)

i

�2
+
�
� (2)

i

�2
�

(15)

because it generates an SVR that is easy to solve. (Mathematically,
the appeal of this penalty is that it is easy to differentiate
[35,38,40,41].) The larger the constant C > 0 is in Equation (15),
the larger the amount of �-tube violation one is willing to tolerate.
To further simplify the SVR formulation, we drop the offset vari-
able b0 in the line/plane-of-fit, that is, we write g(x) = xT b instead
of g(x) = xT b+b0. In the SVR literature, it is generally assumed that
the offset variable b0 is not known in advance. However, in most
chemometric applications, the offset variable b0 is known. If the
data has been mean centered, as we assume here in this paper,
then b0 does not have to be explicitly solved for because b0 = Ny.

In optimization theory, one typically transforms a problem
with inequality constraints (the primal problem) into another
one (the dual problem) with simpler constraints. In the case
of Equation (14), the transformation of the primal minimization
problem becomes the maximization of the following Lagrangian
function L [36,42]:

L(b, a(1), a(2), �(1), �(2)) =
1

2
||b||22 + P(�(1), �(2))

+
nX

i=1

a(1)
i

�
–ri – � – � (1)

i

�

+
nX

i=1

a(2)
i

�
ri – � – � (2)

i

�
(16)

Figure 1. Both subplots contain the same data, but the line-of-fit in each subplot is different. The blue �-tube is wide enough to contain all of the data
points in both subplots. However, the narrower �-tube (defined by the red lines) better fits the data. A wide �-tube does not guarantee a good line-of-fit.5
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The elements in the vectors a(1) =
h

a(1)
1 , : : : , a(1)

n

i
and a(2) =h

a(2)
1 , : : : , a(2)

n

i
are called the “Lagrange multipliers,” and they are

often referred to as the dual variables. Instead of solving for the
primal variables b (one component for each wavelength), we
solve for the dual variables a(1) and a(2) (one component for each
sample). In practice, the dual variables a(1) and a(2) are collapsed
into a single vector a = a(1) – a(2) [36,38]. Moreover, the slack and
primal variables are linearly related to the dual variables [36]:

� (1)
i =

1

C
a(1)

i and � (2)
i =

1

C
a(2)

i (17)

b = XT (a(1) – a(2)) = XT a =
nX

i=1

aixi (18)

Plugging Equations (17) and (18) into Equation (16), we can
simplify the Lagrangian function into the following uncon-
strained minimization problem involving only the dual variables
a [36]:

minimize L(a), L(a) =
1

2
aT (K + �2In)a – aT y + �||a||1 (19)

where K = XXT is the kernel matrix and � = 1/C.
According to Equation (18), the primal regression vector b can

be written as a linear combination of spectral samples xi . Thus,
the samples associated with ai = 0 have no impact in the con-
struction of b. The samples that do matter, the ones associated
with nonzero values of ai , are referred to as the “support vec-
tors.” Recall that in the primal problem of Equation (14), samples
outside the �-tube (far away from the predicted line/plane-of fit)

are punished via the penalty term P(�(1), �(2)): either � (1)
i or � (2)

i is
nonzero. For the samples within the �-tube, there is no penaliza-

tion: both � (1)
i and � (2)

i are zero. Since the slack variables and dual

variables are linearly related via Equation (17), if both � (1)
i and � (2)

i

are zero, then ai = a(1)
i – a(2)

i = 0. Hence, the support vectors are
precisely those spectral samples that lie “outside” the �-tube.

The aforementioned SVR formulation can easily be generalized
to nonlinear regression via nonlinear kernels [35,36,38]. However,
we restrict our attention to the linear regression setting where
K = XXT . We now show how the IRFS schemes in Section 2 can
be applied to SVR for purposes of sample selection.

3.2.1. Kernel ridge regression

If we set � = 0 in Equation (19), then the �-tube shrinks to zero,
and all the samples become support vectors. The SVR problem of

Equation (19) then simplifies to

minimize h(a), h(a) =
1

2
aT (K + �2In)a – aT y (20)

In the optimization setting, if we set the gradient of h(a) equal to
zero and solve for a, then we arrive at the simple linear system

(K + �2In)a = y (21)

which is often referred to as kernel RR [38].
To see how IRFS schemes can be repurposed for sample selec-

tion, we will make precise the connection between Equation (21)

and ordinary RR. Note that the kernel matrix K = XXT is
symmetric positive semidefinite (all of the eigenvalues of K are
nonnegative). This property allows us to take fractional powers

of K via the singular value decomposition: Kp = U†pUT where
U is a matrix of singular vectors and † the diagonal matrix of
singular values. As a result, we can exploit the following variable
transformation of Franklin [43]

K* = K1/2 and y* = K–1/2y (22)

and rewrite Equation (21) as the linear system

K�a = y� where K� =

�
K*

�In

�
and y� =

�
y*

0n

�
(23)

Hence, the solutions to Equations (20)–23) are the same as the
solution to K*a = y* when solved by RR. However, one is not
restricted to using RR—one can also use PLS or PCR. Moreover,
any of the IRFS schemes used in Section 2 can now be applied to
K*a = y* (Table II). The IRFS schemes then generate a sequence
of increasingly sparse “support-vector-like” solutions. When we
back-substitute b[k] = XT a[k] in Table II, we likewise generate a
sequence of primal regression vectors b[0], b[1], : : :. However, the
regression vector b[k] is not guaranteed to be sparse in the wave-

length sense where many of coefficients b[k]
i are zero. Sparsity is

only achieved in the sample sense where many of the coefficients

a[k]
i are zero.

3.2.2. Support vector regression reformulated as a least absolute
shrinkage and selection operator problem

The variable transformation of Franklin in Equation (22) also
allows us to rewrite the SVR problem in Equation (19) as

minimize h(a), h(a) =
1

2
||K�a – y�||22 + �||a||1 (24)

Table II. IRFS scheme for sample selection

Step 0: Solve K*a[0] = y* by RR, PLS, or PCR for a[0]; set k = 1

Step 1: Form scaling matrix F[k] = diag
�

f [k]
1 , : : : , f [k]

m

�

Step 2: Solveˆ[k]˛[k] = Ny[k] by RR (or PLS or PCR) for ˛[k] whereˆ[k] = KF[k]

Step 3: Recover a[k] using the back-substitution a[k] = F[k]˛[k]

Step 4: Set k = k + 1 and go to step 1

IRFS, iteratively reweighted feature scaling; PLS, partial least squares; RR, ridge regression; PCR, principal component regression.
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Functionally, Equation (24) is the same as the LASSO problem
in Equation (2) with q = 1. From this perspective, one can see
that the sparsity that SVR achieves is really through the sparsity
mechanism enabled by the LASSO algorithm. In Section 2, we
wanted to replace the computationally burdensome LASSO algo-
rithm with IRFS schemes. Here, in Section 3, we are doing the
same thing—replacing the SVR with IRFS schemes—but in the
dual space of a = [a1, : : : , an]T instead of the primal space of
b = [b1, : : : , bd]T .

4. IMPLEMENTATION AND
MODEL SELECTION

4.1. Least absolute shrinkage and selection operator via
least angle regression

The particular LASSO algorithm we use in this paper is known
as LAR [13]. If there are d wavelengths in the data set, then LAR
builds d + 1 regression vectors b0, b1, : : : , bd where bi contains
i nonzero regression coefficients. In effect, LAR starts with the
most sparse solution (b0, a regression vector of all zeros) and
ends up with a regression vector bd containing all nonzero coef-
ficients. When n � d (and if X has full numerical rank), then
the final LAR iterate bd corresponds to the ordinary least squares
solution. Note that LAR can operate in two modes: with or with-
out the “LASSO modification.” Ordinary LAR is LAR without the
LASSO modification—it adds one feature at a time. Ordinary LAR
is a bottom-up, greedy algorithm: the set of i coefficients in bi
is always a subset of coefficients contained in bi+1. LAR with the
LASSO modification either adds or deletes one feature at a time,
and it stops when the final iterate contains all of the features. We
use ordinary LAR.

4.1.1. The tuning parameter associated with least angle regression

It is important to note that the vast majority of LASSO algorithms
require � as an input. These algorithms then solve Equation (2)
with q = 1, and their output is some �-dependent regression
vector. Only then can one determine the number of nonzero coef-
ficients in the regression vector. Aside from the fact that a larger �
value results in greater sparsity, the LASSO practitioner does not
know—ahead of time before the calibration is performed—the
number of nonzero coefficients associated with a given � value.
LAR, on the other hand, dispenses with the need to know �. As
LAR creates the regression vectors {b0, b1, b2, : : : , bd} in a for-
ward, stepwise fashion, it computes, as a side effect, the � values
{�0,�1,�2, : : : ,�d} associated with these regression vectors such
that �0 > �1 > �2 > � � � > �d . As a result, LAR is much more
intuitive to use than other LASSO algorithms because the tuning
parameter of interest is the number of wavelengths used.

4.1.2. Computational considerations of least angle regression

There are many implementations of the LAR algorithm. We
choose the MATLAB (Natwick, MA, USA) implementation that we
denote as DTU-LAR [44]. (DTU is the Danish acronym for the
Technical University of Denmark from where it was developed.)
The primary computational overhead associated with DTU-LAR is
that, at the ith iteration, an i � i linear system must be solved.
There are many numerical techniques that can be used to accel-
erate the solution of this linear system. The technique employed
in DTU-LAR involves the QR factorization of Xi (X using only i

LAR-selected features), which can be efficiently updated or down-
dated whenever a feature enters or leaves the active set of fea-
tures. DTU-LAR, in its default setting, will continue until all N LAR
iterations have been exhausted—one iteration for each added
feature such that N = d.

The computational burden of DTU-LAR is minimal when i (1 �
i � d) is small. However, when i is “large,” for example, hun-
dreds or thousands, the solution of an i � i linear system will
become prohibitive—regardless of which numerical technique is
used to accelerate the linear inversion. Hence, DTU-LAR does not
“scale” very well to large numbers of wavelengths. It is at this
stage that we expect the IRFS schemes to pay dividends in terms
of speedup. Whereas LAR performs d linear inversions where d
could be in the hundreds or thousands, IRFS requires only M iter-
ations of PLS (or PCR) where M is typically in the single digits.
At this point, there are two remarks worth mentioning regarding
iteration number. First, DTU-LAR allows one to prematurely stop
at a desired number of features. Instead of performing N = d iter-
ations, one can perform N = d0 iterations where d0 << d. Second,
the computational bottleneck associated with classical MC meth-
ods such as PLS or PCR is the number of latent vectors K that one
wants to use. Hence, when comparing the computational effi-
ciency between DTU-LAR and IRFS, one must keep in mind the
number of LAR iterations N versus the number of IRFS iterations
M coupled with the number of latent vectors K . An example of
this trade-off between N, M, and K is given in Section 5.2.2.

4.2. Support vector regression via least angle regression

In SVR, the penalty parameter � in Equation (19) is the tuning
parameter that must be chosen. However, because we can trans-
form the SVR problem in Equation (19) into the LASSO problem
of Equation (24), we can use any LASSO method to solve the
SVR problem. We will denote the solution of the SVR problem
via the LASSO problem in Equation (24) as SVR-LASSO. In partic-
ular, we use the DTU-LAR implementation from Section 4.1.2 to
solve the SVR problem. In this approach, we construct a sequence
of dual solution vectors {a0, a1, a2, : : : , an} such that ai contains
i nonzero coefficients. (Recall that the samples associated with
these nonzero coefficients are the support vectors.) The sequence
of primal regression vectors bi is easily recovered via the

relation bi = XT ai . Although the support vectors are selected
from the entire calibration pool of samples, a chemometrician, in
hindsight, may want to go back and see which spectra were used
as support vectors. This could be a useful information to explore,
especially for subsequent calibrations.

4.3. Iteratively reweighted feature scaling implementation

For IRFS, we will examine its use for both wavelength and sample
selection. As opposed to LAR, IRFS is a top-down algorithm—we
start with all the features/samples and then winnow down the
features/samples using the diagonal scaling matrices of Tables I
and II. In Tables I and II, we will use PLS as the baseline MC method.
For wavelength selection, we will compare the IRFS schemes
(FOCUSS, MLE, APPLS, and BWS) against ordinary PLS. In the case
of sample selection, we also compare the IRFS schemes against
ordinary PLS. Note that in the sample selection case, we are solv-
ing Equation (23) with � = 0. Hence, PLS applied to this equation
will be referred to as kernel PLS.5
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To illustrate the simplicity of the IRFS implementations for both
wavelength and sample selection, MATLAB scripts for IRFS are
available at www.hpc.unm.edu/~andriese

4.4. Model selection

We want to select the appropriate tuning parameter (number of
wavelengths in the case of LASSO, the number of support vectors
in the case of SVR-LASSO, and the number of components or fac-
tors in the case of PLS) that models as much of the complexity of
the system without over-fitting. To accomplish this goal, we use
a five-fold cross-validation. A tuning parameter that is too small
tends to under-fit the data, whereas a tuning parameter that is
too large tends to over-fit. N-fold cross-validation builds a model
on N–1 disjoint sample blocks of the calibration spectra. A predic-
tion for the analyte concentrations is then made for the samples
in the withheld sample block. This process is repeated for a total
of N times until each sample block has been left out once. The
analyte concentration predicted for a sample is then compared
with the known concentration of its reference sample. We use the
root-mean-square error of cross-validation (RMSECV)

�j =

vuut1

n

nX
i=1

�
Oyij – yi

�2

as a measure of how well a particular calibration fits the ana-
lyte concentration data. The value Oyij is the prediction of the ith
calibration sample using the jth tuning parameter.

4.4.1. M˛-test for choosing a tuning parameter

A naive choice for the optimal calibration tuning parameter
would be the tuning parameter that minimizes the RMSECV curve
�j , j = 1, : : : , k. Using the k*th tuning parameter (1 � k* � k) that
minimizes the RMSECV generally leads to over-fitting. Alterna-
tives to the minimum RMSECV essentially strive to find an optimal
model from a collection of models using fewer than k* tuning
parameters. One common alternative used in chemometrics is
the F-statistic test [45]. The F-test generally yields a model that
under-fits. However, the models selected by the F-test, in our
experience, are too parsimonious. We propose a simple model
selection method called the M˛-test that works reasonably well,
is easy to implement, and results in a model in between the
extremes of the F-test and the minimum RMSECV [46]. Let k0 be
the index that corresponds to the logarithm of the RMSECV value
�k0 that first goes below the threshold:

a + ˛(b – a) where a = min
j

(log10(�j)) and b = max
j

(log10(�j)).

The value of ˛ is between 0 and 1 and is set to 0.05. If one wants
a more or less parsimonious model, then one can increase or
decrease, respectively, the value of ˛.

Note that the M˛-test depends on the scale of the elements
in y. Hence, that is why we take the logarithm of the RMSECV
values—in the event that the discrepancy between minj(�j) and
maxj(�j) is very large. Although this simple approach works rea-
sonably well with our data in Section 5.1 (and with other spectral
data sets that we have worked with), it may not generalize to
all data sets. A useful discussion on scale-free model selection
performance criteria (such as the one-standard-error rule) can be
found in the literature [47].

Once the tuning parameter has been selected using some
model selection performance criterion (M˛-test in our case) on
the calibration data, we then build a calibration model b using
the selected tuning parameter on the entire calibration set. This
calibration model b is then applied to the validation spectra,
and a prediction is made on the analyte concentrations for these
samples. The root-mean-square error of validation (RMSEV) is
then computed.

4.4.2. M˛-test applied to least angle regression and iteratively
reweighted feature scaling

For LAR, the tuning parameter is the number of wavelengths,
and the M˛-test is used for determining this parameter. For IRFS
using PLS, model selection is as follows. For the 0th iterate (ordi-
nary PLS), we use the M˛-test to select the PLS component or
factor. For the second, fourth, and sixth iterations, we do the
exact same thing. (We examine only a few IRFS iterations to make
more manageable the presentation of subsequent results). We
are intentionally making no attempt to simultaneously optimize
both the number of IRFS iterations and the number of PLS factors.
Hence, per IRFS iteration, the number of PLS factors is the lone
parameter that we will tune. We are just reporting what would
happen if we were to fix the number of IRFS iterations to be 2, 4,
or 6. Does sparsity increase as a function of IRFS iteration? Does
RMSEV decrease as a function of IRFS iteration?

5. RESULTS AND DISCUSSION

5.1. Data sets

To facilitate a comparison between LASSO-based methods and
IRFS, we examine the following spectroscopic data sets: corn [48]
and wheat [49].

The corn data set consists of 80 samples of corn with d = 700
absorbances measured from 1000 to 2498 nm at 2-nm intervals
on three near-infrared (NIR) spectrometers designated m5, mp5,
and mp6. Reference values are provided for oil, protein, starch,
and moisture content. Protein content is the prediction property
studied in this paper, and the spectra measured on instrument
m5 serve as the primary calibration set.

The wheat data set consists of 884 spectral samples (777
calibration and 107 validation samples) of whole-grain Canadian
wheat measured by diffuse reflectance spectroscopy. There are
d = 1038 wavelengths from 400 to 2498 nm at 2-nm intervals.
The calibration samples represent samples grown in years 1998
and 2000–2005. The validation samples were grown in 1999 and
are quite separate from the calibration samples. There are many
references associated with this data set, but we are only inter-
ested in percentage protein content for each sample. This data set
was featured in the “NIR data shoot-out” of the 2008 International
Diffuse Reflectance Conference in Chalmersburg, PA, USA.

For the corn data set, the calibration and validation data sets
are not specified. In this paper, the first 60% of the data (samples 1
through 48) will be used as the calibration set, that is, n = 48 is the
number of calibration samples. The remaining 40% (samples 49
through 80) will be used as the validation set. Table III shows the
dimensions of each data set—the number of wavelengths and
the number of samples in the calibration and validation sets.

For both data sets, no modifications or preprocessing treat-
ments (other than the initial mean centering) were made. The
data was not scaled to have unit variance across wavelengths.
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Table III. Data set dimensions

Data set
Number of

Number of samples

wavelengths Calibration Validation Total

Corn 700 48 32 80
Wheat 1050 777 107 884

Moreover, in the results to follow, we were completely blind to
the validation spectra during calibration. If a validation spectrum
did not necessarily correspond to the trend of the most homoge-
neous calibration spectra, then the prediction error may be larger
than expected. No attempt was made to exclude validation spec-
tra using some exclusion criteria or measure of “outlyingness.”
For example, in the wheat data set, the validation samples come
from a completely different year than that of the calibration sam-
ples. In this case, wavelength selection may result in a finely tuned
calibration model that may not generalize to the different set of
samples in the validation set. (If the calibration set consisted of
similar samples as those in the validation set, then a different set
of wavelengths may have been chosen.) Hence, for the wheat
data set, it will be interesting to see how PLS performs (using all
wavelengths) compared with LAR and IRFS (using wavelengths
specific to the calibration set).

5.2. An example of wavelength selection using the
corn data

We first want to give an example comparison between LASSO
and IRFS for wavelength selection. For simplicity, we restrict
ourselves (for the time being) to the corn data set and to the MLE
IRFS scheme.

5.2.1. Performance comparison between least absolute shrinkage
and selection operator and iteratively reweighted feature scaling

In Figure 2, LASSO is compared with the MLE scheme. The upper
left subplot displays the RMSEV curve for the LASSO. The large
white dot on the RMSEV curve corresponds to the model chosen
by the M˛-test. The upper right subplot shows the RMSEV curves
across multiple IRFS iterations. Here, the RMSEV for the initial
IRFS iterate (the black curve) corresponds to ordinary PLS regres-
sion. The red, green, and blue RMSEV curves correspond to IRFS
performance after two, four, and six IRFS iterations, respectively.
The large dots similarly correspond to the model chosen by the
M˛-test. The upper left and upper right subplots highlight the
need for wavelength selection. Without wavelength selection,
the RMSEV is slightly below 0.01. With wavelength selection, the
RMSEV is reduced significantly by both LASSO and IRFS.

The lower-left subplot shows the value of the regression coef-
ficients for the models chosen by the M˛-test for LASSO and
IRFS. In addition, the number of nonzero coefficients used in the
regression vectors is shown. For example, at the fourth IRFS itera-
tion (the green curve), only 160 out of 700 regression coefficients
are nonzero. Not easily displayed in this subplot is the fact that
many of the 160 nonzero regression coefficients are quite small
in magnitude but not sufficiently small enough (below some
threshold) to be set to zero. Hence, sparsity is effectively achieved
quite rapidly after a few IRFS iterations. The convergence of
IRFS to a sparse model vector can more easily be seen in the

lower-right subplot—it is the same as the lower-left subplot,
but the y-axis range is restricted to [–8, 8]. With enough IRFS
iterations, IRFS is able to perform as well as LASSO with respect to
RMSEV and parsimony (the number of wavelengths used).

5.2.2. Computational speedup

The subplots in Figure 2 suggest a natural question: How many
IRFS iterations are needed to achieve an adequate level of predic-
tion? In the case of the corn data set, four IRFS iteration appear
to suffice. Other data sets may require fewer, the same, or more
IRFS iterations. Using too few IRFS iterations would not likely drive
down the RMSEV value to a reasonable level (a value commensu-
rate with the LASSO RMSEV result). Using too many IRFS iterations
might well yield a sparse regression vector with a low RMSEV, but
the overall CPU time might be longer than that of the LASSO,
diminishing any speedup advantage.

For a given number M of IRFS iterations, the computational
speedup achieved by IRFS over LASSO will depend upon two
criteria: the number of PLS factors K and the number of LAR iter-
ations N. In the case of LAR, if a data set has d wavelengths, then
LAR (by default) will perform d + 1 iterations, with the (i + 1)th
iteration generating a regression vector b[i] containing i nonzero
regression coefficients. However, as seen in the left subplot of
Figure 2, one need not use that many wavelengths to achieve
a desired result. Because the DTU-LAR implementation of the
LASSO allows one to set the maximum number of LAR iterations,
N can be set to be less than d. The computational speedup of IRFS
over LASSO will therefore be defined as the following ratio:

	 =
tLASSO(N)

tIRFS(M, K)
(25)

where tIRFS(M, K) is the CPU time required to perform M IRFS iter-
ations across K PLS factors and tLASSO(N) is the CPU time required
to perform N LAR iterations. For example, if 	 = 2 for a given set
of values for N, M, and K , then IRFS is twice as fast as LASSO. In
short, if 	 > 1 or 	 < 1, then IRFS is faster or slower, respectively,
than LASSO. In Figure 3, the speedup 	 values are shown on a
log10-scale for M = 0, 2, 4, 6. (Note that M = 0 corresponds to
the initial IRFS iterate, i.e., ordinary PLS regression.) The x-axis
and y-axis tick marks correspond to PLS factors K and LASSO
iterations N, respectively. The “hot” colors (red, orange, and yel-
low) and “cool” colors (blue, indigo, and violet) correspond to the
parameter regions where IRFS is faster and slower than LASSO,
respectively. For example, an orange pixel value of log10(	 ) = 2
corresponds to a parameter setting of K , N, and M values that
results in IRFS being 102 = 100 times faster than the DTU-LAR
LASSO implementation. As expected, whenever the maximum
number of LASSO iterations is sufficiently high, or when the
number of PLS factors is small, IRFS will outperform LASSO in
terms of speedup.5
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Figure 2. Primal sparsity performance on a corn data set using maximum likelihood estimate scheme. The upper left subplot shows root-mean-square
error of validation (RMSEV) as a function of the number of wavelengths used in the calibration model. The large white dot corresponds to the RMSEV
value associated with the calibration model chosen by the M˛ -test. The upper-right subplot similarly shows RMSEV performance as a function of partial
least squares (PLS) factor, for a fixed number of iteratively reweighted feature scaling (IRFS) iterations. The large black, red, green, and blue dots similarly
correspond to the RMSEV values associated with the calibration models chosen by the M˛ -test. The lower-left subplot displays, for each wavelength,
the regression vector coefficient associated with least absolute shrinkage and selection operator (LASSO) and IRFS. Also shown is the sparsity, that is,
the number of nonzero coefficients associated with each regression vector. The lower-right subplot is the same as the lower-left subplot except that the
y-axis is restricted to the interval [–8, 8]. LASSO, least absolute shrinkage and selection operator.

Figure 3. Speedup of iteratively reweighted feature scaling (IRFS) over least absolute shrinkage and selection operator (LASSO) across IRFS iterations.
The colors indicate the value of � in Equation (25) on a log10-scale. The x-axis indicates the number of partial least squares factors, whereas the y-axis
indicates LASSO iterations (the number of wavelengths used in the calibration model.)

5.3. Sample selection example using the wheat data set

We now give an example for the comparison between SVR-LASSO
and IRFS for sample selection. In this case, we consider the wheat
data set and apply the APPLS scheme. Because there are 777
samples in the calibration set, one can ask if all samples are
needed for an effective calibration model, that is, can SVR-LASSO
and/or IRFS build a well-performing primal regression vector b
from a parsimonious dual solution vector a containing relatively
few support vectors?

In the upper-left subplot of Figure 4, one does not need all
777 samples to build a model that outperforms a model using
all wavelengths. In the upper-right subplot, an argument can
be made that no sample selection is needed because ordinary

PLS (the black curve) performs just as well as IRFS. However, as
the lower-left subplot shows, as the IRFS iterations increase, one
needs fewer and fewer samples to build a model vector that per-
forms just as well (or slightly better) as PLS. After four and six IRFS
iterations, only 2.45% (32 samples out of 777) and 1.67% (19 sam-
ples out of 777) of the calibration data are needed for adequate
model construction.

5.4. Summary root-mean-square error of validation and
sparsity results

Figure 5 displays the RMSEV results (associated with the
calibration models chosen by the M˛-test) across IRFS schemes
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Figure 4. Dual sparsity performance on wheat data set using adaptively preconditioned partial least squares (PLS) scheme. The upper-left subplot
shows root-mean-square error of validation (RMSEV) as a function of the number of support vectors used in the calibration model. The large white
dot corresponds to the RMSEV value associated with the calibration model chosen by the M˛ -test. The upper-right subplot similarly shows RMSEV
performance as a function of PLS factor, for a fixed number of iteratively reweighted feature scaling (IRFS) iterations. The large black, red, green, and blue
dots similarly correspond to the RMSEV values associated with the calibration models chosen by the M˛ -test. The lower-left subplot displays, for each
sample, the regression vector coefficient associated with least absolute shrinkage and selection operator (LASSO) and IRFS. Also shown is the number
of support vectors (the number of nonzero coefficients) associated with each regression vector. The lower-right subplot is the same as the lower-left
except the y-axis has been restricted to the interval [–10000, 10000]. SVR, support vector regression; KPLS, kernel PLS.

Figure 5. For the iteratively reweighted feature scaling (IRFS) schemes , the root-mean-square error of validation (RMSEV) values (associated with the
calibration models chosen by the M˛ -test) are plotted as a function of the percentage of wavelengths used (left subplot) and samples used (right
subplot). The number inside the white dots corresponds to the IRFS iteration. The yellow dot in each subplot indicates the least absolute shrinkage
and selection operator performance associated with the calibration model chosen by the M˛ -test. The two white horizontal lines on the left subplot
correspond to the y-axis limits of the right subplot. MLE, maximum likelihood estimate; FOCUSS, focal underdetermined system solver; APPLS, adaptively
preconditioned partial least squares; BWS, binary weighting scheme.

for the corn data set. The x-axes on the left and right sub-
plots correspond to the percentage of wavelengths and samples,
respectively, used in the calibration. The number inside each
white dot corresponds to the IRFS iteration associated with the
particular (percentage,RMSEV)-ordered pair. The white dot num-
bered with a zero on the left subplot corresponds to PLS—it
achieved an RMSEV of 0.0149 using all 700 wavelengths. Similarly,

the white dot numbered with a zero on the right subplot cor-
responds to kernel PLS—it achieved an RMSEV of 0.0162 using
all 48 samples. The performance of LASSO on the corn data
set is shown in two places—as the yellow dot in Figure 5
and in Table IV—it achieved an RMSEV of 0.0005 and 0.0140
using 25 (out of 700) wavelengths and 35 (out of 48) samples,
respectively. For a sense of scale, the two white horizontal6
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Table IV. RMSEV results for wavelength and sample selection using the LASSO

Wavelength Selection Sample Selection

RMSEV Percentage RMSEV Percentage

Corn 0.0005 3.57% (25) 0.0140 72.91% (35)
Wheat 0.516 4.57% (48) 1.284 30.37% (236)

RMSEV, root-mean-square error of validation; LASSO, least absolute shrinkage and selection operator.
The number in parentheses indicate the number of wavelengths and samples used.

Figure 6. Root-mean-square error of validation (RMSEV) performance for the wheat data set as a function of the percentage of wavelengths and
samples used. The same description convention is used as in Figure 5. MLE, maximum likelihood estimate; FOCUSS, focal underdetermined system
solver; APPLS, adaptively preconditioned partial least squares; BWS, binary weighting scheme.

lines on the left subplot correspond to the y-axis limits of the
right subplot.

Wavelength selection of any kind (with the exception of
FOCUSS and early-iteration BWS) results in superior performance
relative to ordinary PLS with DTU-LASSO being slightly inferior
to the MLE and APPLS schemes. The APPLS scheme is quite
striking considering that, after two iterations, only 15% of the
wavelengths are being used. With respect to sample selection,
the improvement over kernel PLS in RMSEV using SVR-LASSO
or any of the IRFS schemes (except BWS) is more modest. The
BWS scheme performs miserably because the number of samples
kept per iteration (in a data set that has relatively few samples)
decreases exponentially. The APPLS scheme requires the fewest
number of samples (or support vectors), whereas the FOCUSS
scheme (with p = 1) is ineffective in driving down both the
number of samples and wavelengths.

Figure 6 corresponds to the wheat data set, and it follows
the same description convention as Figure 5. Here, it is always
preferential to perform some form of wavelength or sample selec-
tion. Again, the APPLS scheme consistently shows improvement
in performance when using just a few IRFS iterations. After just
four iterations, APPLS requires just 3.3% and 4.1% of the wave-
lengths and samples, respectively. As in the corn data set, the
BWS scheme also performs admirably in wavelength selection,
provided the number of IRFS iteration is relatively high. Even
though wavelength selection was performed on wheat samples
grown in different years than that of the validation samples, the
RMSEV performance was superior to ordinary PLS that used all

samples. Unlike the corn data set, sample selection using any of
the IRFS schemes (excluding BWS) results in substantial improve-
ment over kernel PLS and the DTU-LAR SVR-LASSO implemen-
tation (the yellow dot corresponding to SVR-LASSO on the right
subplot is not shown—it is above the displayed y-axis limits).

6. CONCLUSION AND FUTURE WORK

In this paper, we propose simpler alternatives to the LASSO and
SVR for the purposes of wavelength and sample selection, respec-
tively. These alternatives—the IRFS schemes—require nothing
more than the iterative recycling of regression coefficients from
widely adopted regression techniques such as PLS, PCR, or RR.
The boost in performance, whether it be RMSEV or the small num-
ber of wavelengths or samples used in the calibration model, can
be substantial. Moreover, only a few IRFS iterations are required to
see improvement in performance, making these IRFS alternatives
competitive with respect to computational efficiency.

With respect to future work, one could perform both wave-
length and sample selection in an alternating fashion to create
a minimal set of samples (rows) and wavelengths (columns).
Although coupling wavelength/sample selection with regression
was the task of interest in this paper, one could easily apply
the IRFS schemes to the binary classification scenario. Instead
of working with linear kernels, the IRFS versions of SVR could
also be extended to nonlinear kernels. In short, IRFS provides
a versatile and pragmatic framework for continued research in
spectroscopic applications.

J. Chemometrics 2013; 27: 50–62 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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