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Interrelationships between generalized
Tikhonov regularization, generalized net
analyte signal, and generalized least squares
for desensitizing a multivariate calibration
to interferences

Erik Andriesa,b* and John H. Kalivasc

Orthogonal pre-processing (orthogonal projection) of spectral data is a common approach to generate analyte-
specific information for use in multivariate calibration. The goal of this pre-processing is to remove from each
spectrum the respective sample interferent contributions (spectral interferences from overlap, scatter, noise, etc.).
Two approaches to accomplish orthogonal pre-processing are net analyte signal (NAS) and generalized least squares
(GLS). Developed in this paper is the mathematical relationship between NAS and GLS. It is also realized that
orthogonal NAS pre-processing can remove too much analyte signal and that the degree of interferent correction can
be regulated. Similar to GLS, the degree of correction is accomplished by using a regularization (tuning) parameter
to form generalized NAS (GNAS). Also developed in this paper is an alternative to GNAS and GLS based on gener-
alized Tikhonov regularization (GTR). The mathematical relationships between GTR, GNAS, and GLS are derived. A
result is the ability to express the model vector as the sum of two contributions: the orthogonal NAS contribution
and a non-NAS contribution from the interferent components. Thus, rather than the usual situation of sequentially
pre-processing data by either GNAS or GLS followed by model building with the pre-processed data, the methods of
GTR, GNAS, and GLS are expressed as direct computations of model vectors allowing concurrent pre-processing and
model building to occur. Simultaneous pre-processing and model forming are shown to be natural to the GTR process.
Two near-infrared spectroscopic data sets are studied to compare the theoretical relationships between GTR, GNAS,
and GLS. One data set covers basic calibration, and the other data set is for calibration maintenance. Filter factor
representation is key to developing the interprocess relationships. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multivariate calibration relates a dependent variable such as a
chemical or physical property to independent variables such as
spectroscopic measurements via the model vector [1–3]. The
model vector is commonly estimated by the methods of partial
least squares (PLS), the Tikhonov regularization (TR) variant of
ridge regression (RR), or principal component regression (PCR).
The goal in spectral calibration is to determine an appropriate
estimate of the model vector in order to balance figure of mer-
its such as prediction accuracy and precision (the bias/variance
trade-off ), sensitivity, and detection limit. This balance is typi-
cally accomplished by forming the model vector such that it is
desensitized to the interferent space [4,5]. The interferent space
is that part of the calibration space not due to the analyte and can
consist of any combination of effects from chemical (including
spectral), physical, environmental, or instrumental sources.

To assist in developing a model insensitive to the interferent
space, pre-processing methods are commonly used to remove
the interferent information [6,7]. The methods are varied and
well reviewed including examples and lists of pros and cons [7].
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The methods can be as simple as using derivatives based on only
spectral information or more complicated such as orthogonal
signal correction that use spectral and analyte information—see
[7] and references therein.

Of the many pre-processing possibilities, two common
approaches are net analyte signal (NAS) processing and general-
ized least squares (GLS) [7–9]. In both cases, the goal is to remove
from spectra the interferent contributions (see Section 4 for the
respective details). Essential to both processes is a set of spectra
spanning the interferent sample matrix, that is, spectra charac-
terizing artifacts that the model needs to be desensitized to.
Examples of orthogonal NAS pre-processing applications include
instrumentation differences [10,11], replicate measurement vari-
ation such as in probe placement [12], baseline variations [13,14],
temperature [15,16], particle scattering [17], optical path-length
correction [18], and human subject differences in biomedical
studies [19–21].

When spectra are pre-processed, it is generally found that
fewer reference samples are needed to form the calibration
model [9,22], and this has also been found to be true for a TR vari-
ant in which no reference samples are used [23]. Pre-processing
also often results in simpler models, for example, fewer PLS latent
variables, but prediction errors are commonly the same or slightly
smaller than from models formed without pre-processing. With
simpler models, it is typically indicated that improved model
interpretation is possible.

Whereas GLS provides flexibility in the degree of pre-
processing spectra relative to the interferent space, NAS has
only been used as an orthogonal pre-processor. As noted in
[4], orthogonal correction to spectra is not always best for
reducing prediction errors in the inverse least squares setting
such as with PLS or RR. Complete orthogonal pre-processing is
useful when there is little interferent contribution to the mea-
sured spectra. Instead, it is suggested to include the correc-
tion spectra (interferent spectra) in the modeling process as
with the TR variants [4,5,11,24] recently reviewed [25] or other
approaches [26,27].

Some limited interrelationships between TR and NAS as well
as GLS and NAS have been presented in spectral pre-processing
formats [9,10]. In both cases, the relationships are derived and
discussed only at the point where TR or GLS converge to NAS
pre-processing. In [10], a generalized form of NAS (GNAS) was pre-
sented (see Section 4.1), but only orthogonal NAS was studied.
Henceforth, NAS shall refer to the orthogonal version as detailed
in Section 4.1.

Developed in this paper are generalized TR (GTR) and detailed
mathematical derivations of the interrelationships between
GTR, GNAS, and GLS. Interrelationships are established in two
formats—spectral processing and inverse processing. Spectral pro-
cessing considers GNAS, GLS, and GTR as spectral pre-processing
methods that replace the linear system Xb = y with a modified
linear systemeXb =ey that incorporates interferent space informa-
tion. The modified linear system is then solved by conventional
means (PLS, TR, or PCR), and a model vector b is obtained. Inverse
processing works with GNAS, GLS, and GTR as model-building
methods that essentially pre-process the data while forming the
model. The spectral and inverse processing methods are applied
to two spectral data sets demonstrating equivalencies as well
as respective distinctiveness. The advantages and disadvantages
of the three approaches are described. One spectral data set
is concerned with spectral interferences primarily from spectral
overlap, and the other spectral set deals with instrument interfer-

ences, that is, differences between instruments are used to form
a new model robust to the instrument differences.

2. PRELIMINARIES

The paper’s focus is theoretical development of interrelationships
between GNAS, GLS, and GTR. Evaluation of the two data sets is
not to determine whether GNAS, GLS, or GTR is better than no
pre-processing or to ascertain if the approaches form more inter-
pretable models compared with no pre-processing. Instead, the
data sets are used to evaluate the theoretical relationships. Com-
parisons of the processes are based on prediction errors. Other
figures of merit could be evaluated, for example, sensitivity and
limit of detection, but such merits were not evaluated.

2.1. Notation

Lowercase and uppercase symbols that are not boldface repre-
sent scalars (x or P). Lowercase and uppercase boldface symbols
represent column vectors (x) and matrices (X), respectively. The
superscripted symbols T, –1, and + indicate the transpose, inverse,
and pseudo-inverse, respectively, of a vector or matrix. A vec-
tor of n ones or zeros is indicated by 1n and 0n, respectively,
whereas In represents the identity matrix of dimension n. An m�p
matrix A can be formed by concatenating its p column vectors
A = [a1, a2, : : : , ap]T, whereas a diagonal matrix is indicated via
the “diag” notation, for example, In = diag(1n) = diag(1, 1, : : : , 1).
A zero matrix of dimension p � q will be denoted by 0p,q (if
p � 1, then 0p). The element associated with the ith row and
jth column of the matrix A will be denoted in two ways: aij or
(A)ij . In this paper, the m � n matrix X represents calibration
data of n absorbance measurements across m samples such that
X = [x1, x2, : : : , xm]T, where xj = [xj1, xj2, : : : , xjn]T. The vec-

tor y = [y1, y2, : : : , ym]T represents the response variables (e.g.,
analyte concentrations) across samples. The k � n matrix L is a
matrix of interferent spectra—spectra not due to analyte varia-
tion but only from spectral interference. These spectra can result
from any combination of effects ranging from chemical, physical,
spectral, environmental, to instrumental sources. If X is from one
set of measurement conditions (primary conditions), then L can
be from the primary conditions for primary calibration or L can
be from the new measurement conditions (secondary conditions)
for calibration maintenance. Before discussing how spectra can
be processed, it will be convenient to discuss the standard matrix
decompositions associated with L.

2.2. Singular value decomposition of interferent spectra

Let L be a matrix of interferent spectra of dimension k�n (k << n).
The full singular value decomposition (SVD) of L is defined as

L = H OR OQT, where OR = [R, 0k,q] (q = n – k), OQ = [Q, Q?] (1)

The matrices H = [h1, : : : , hk] and OQ = [q1, : : : , qn] have dimen-
sions k � k and n � n, respectively, and are orthonormal. The
diagonal matrix R = diag(r1, : : : , rk) contains the singular values
of L. The matrix OQ, the columns of which are the loading vectors
of L, can be split such that Q = [q1, : : : , qk] forms an orthonor-
mal basis for L, the space spanned by the spectral samples in
L, whereas Q? = [qk+1, : : : , qn] forms an orthonormal basis for
L?, the space spanned by the spectral samples orthogonal to L.
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The matrix L is often written more compactly in terms of the
reduced SVD such that L = H OR OQT = HRQT.

3. SPECTRAL PROCESSING

As noted in Section 1, the spectral processing approach replaces
the linear system Xb = y with the modified linear systemeXb =ey
that incorporates interferent space information. The modification
of the linear system can occur in one of two ways—by post-
multiplication or augmentation. Post-multiplication, as its name
implies, post-multiplies X by a matrix P involving the matrix L
of interferent spectra such that the modified linear system takes
the form

eXb =ey or (XP)b = y, where eX = XP and ey = y (2)

Augmentation instead solves the linear system

eXb =ey or

�
X
P

�
b =

�
y

0k

�
, where eX =

�
X
P

�
and ey =

�
y

0k

�

We will first examine the post-multiplication approach.

3.1. Spectral processing via post-multiplication

For the post-multiplication approach, a conventional multivariate
calibration technique (e.g., PLS, TR, or PCR) solves the modified
linear systemeXb =ey or, equivalently, the linear system (XP)b = y.
Different processing matrices P yield different approaches. In this
paper, we examine the following:

P =

8̂̂<̂
:̂

In – L�L, NAS

In – ˇL�L, GNAS�
In + �LTL

�–1/2
, GLS

(3)

We will see in subsequent sections that all three methods share a
similar processing mechanism whereby each loading vector qi of
L is weighted in some fashion:

P = In – QFQT = In –
kX

i=1

fiqiq
T
i , F = diag(f1, : : : , fk) (4)

Different diagonal entries for fi generate the NAS, GNAS, or GLS
processing schemes.

3.1.1. Net analyte signal spectral processing

Net analyte signal processing is the simplest and most common
pre-processing scheme. In short, one decomposes the calibration
spectra into two orthogonal pieces, X1 and X2:

X = X1 + X2 = X(QQT) + X
�

In – QQT
�

where X1 = X(QQT) and X2 = X
�
In – QQT� belong to L and L?,

respectively. Instead of using X, one throws away the interferent
component X1 and keeps only the “interferent-free” spectra X2.
One then solves the following linear system:

XNASb = y, where XNAS = X2 = X
�

In – QQT
�

(5)

By making the processed spectra orthogonal to the space
spanned by the interferent noise, one hopes to immunize the
resulting model vector b against chemical or physical noise. It
should be noted that Equation (5) uses all of the k vectors qi of Q.
However, a subset of the available k vectors can be used instead,
and this subset is often used in practice when the number of
spectra in L is large.

Under the diagonal weighting scheme of Equation (4), the pro-
cessing matrix P in Equation (5) gives unit weight to all of the
loading vectors:

P = In – QQT = In –
kX

i=1

fiqiq
T
i , where fi = 1 for all i

However, completely removing all of the interferent information
from X can have deleterious effects on the calibration [4]. If the
interferent spectra L strongly overlap with the pure-component
spectrum associated with the analyte of interest in X, then the
NAS projection of X can substantially remove the signal that
we want to capture. Hence, calibration with interferent spec-
tra involves a fundamental trade-off: How much of the inter-
ferent and/or analyte information do we want to remove via
a projection?

3.1.2. Generalized net analyte signal spectral processing

If one wants to process spectra that do not entirely eliminate
interferent information so as to preserve some analyte signal,
then one might opt for the GNAS processing treatment

XGNASb = y, where XGNAS = XP, P = In – ˇL�L with ˇ ¤ 1
(6)

Under the diagonal weighting scheme of Equation (4), the GNAS
processing matrix P of Equation (6) weights each loading vector
equally but without unit weight:

P = In – ˇL�L = In –
kX

i=1

fiqiq
T
i , where fi = ˇ for all i (7)

The value of ˇ has occurred within the interval [0, 1] as 0 indi-
cates no removal of interferent information and 1 indicates the
orthogonal removal of interferent information [9]. However, as
shown in Section 5, the mathematical range of ˇ can occur out-
side this interval as well. Moreover, the processed spectra XGNAS

asymptotically approaches the NAS-processed spectra XNAS as ˇ
approaches 1.

3.1.3. Generalized least squares spectral processing

The GLS method uses the covariance information of L to process
the spectra X (see Appendix A for a brief description of the math-
ematical derivation of the GLS processing matrix). The modified
linear system for GLS is as follows:

XGLSb = y, where XGLS = XP, P =
�

In + �LTL
�–1/2

(8)

It is not easy to understand, by just looking at Equation (8), how
the matrix P precisely processes the spectra X. To gain some
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insight, we again call upon the SVD of L and the GLS inverse
formula in Appendix C:

P = (In + �LTL)–1/2 = In –
kX

i=1

fiqiq
T
i , fi = 1 –

1q
1 + � r2

i

(9)

Unlike NAS and GNAS, GLS weights the loading vectors of L in a
disproportionate manner. As the singular values ri are ordered in
descending order (r1 � � � � � rk), the diagonal elements of F =
diag(f1, : : : , fk) are similarly ordered such that f1 � � � � � fk . As a
result, GLS gives greater weight to the first few loading vectors of
L and damps the remaining loading vectors that explain the least
amount of variance. Again, as with NAS and GNAS, the k loading
vectors of Q can be replaced with a subset of the loading
vectors qi .

Although f1 � � � � � fk , all of the diagonal elements fi
rapidly approach 1 when � becomes sufficiently large, that is,
XGLS approaches XNAS when � goes to1. Note that Equation (9)
only makes sense when 1 + � r2

i > 0 for all i. Hence, � is effec-

tively bounded in the interval
�
–r–2

1 ,1
�
. When � is non-negative,

the diagonal weighting elements fi are positive and bounded
within [0, 1]. When � is negative

�
–1/r2

1 < � < 0
�
, fi is negative and

bounded within the interval (–1, 0).
Given that GLS and GNAS share a diagonal weighting mech-

anism, one may wonder if there is a relationship between ˇ in
Equation (7) and � in Equation (9). The authors in [9] state that
GNAS and GLS are equivalent when

� =

�
1

1 – ˇ

	2
– 1 (10)

However, this equation needs further elaboration. If GNAS is
equivalent to GLS when Equation (10) is true, then all of the cor-
responding weights fi in Equations (7) and (9) would have to be
equal as well, that is,

fi = ˇ = 1 –
1q

1 + � r2
i

for all i (11)

As ˇ is constant, the only way for equality to hold in Equation (11)
is for all of the singular values ri to be the same as well—an
unlikely happenstance. One way for equality to hold is to artifi-
cially force all of the singular values ri to be the same. For example,
if one replaces L with its orthogonal loading vectors QT (i.e., L :=
QT), then the SVD of L would yield R = Ik and

ˇ = 1 –
1

p
1 + �

(12)

Solving for � in Equation (12) results in Equation (10).

3.2. Spectral processing via augmentation

In the augmentation approach, the linear system�
X
P

�
b =

�
y
0n

�
with P = �L and � � 0 (13)

is solved instead of Xb = y. We will refer to this augmented lin-
ear system as GTR. The solution vector b of the GTR formula-

tion in Equation (13) is equivalent to the regression vector that
minimizes

min��(b), where ��(b) = ||Xb – y||22 + �2||Lb||22 (14)

The preceding minimization essentially approximates the follow-
ing equality-constrained least squares problem: solve Xb = y
subject to the equality constraints Lb = 0k [28]. Instead of trying
to rigorously satisfy both linear systems to a high degree of accu-
racy, GTR seeks a trade-off between minimizing the residual norm
||Xb – y||2 and the equality constraint norm ||Lb||2.

Geometrically, the constraint norm is a statement about
orthogonality: as noted in [10] with m � n, the larger � is, the
greater emphasis we place on Lb = 0k , that is, the more we
require b to be perpendicular to L—the space spanned by the
spectra in L. The same is true when m < n except that the solu-
tion of Equation (13) requires additional regularization—through
either PCR or PLS in which the number of latent vectors is the
regularization parameter or through an additional L2-penalty or
ridge parameter via TR [25]. The first approach, the solution by
PLS, is used in this study.

Spectroscopically, the constraint Lb = 0 attempts to immu-
nize the model vector against noise by orthogonally pointing b
away from the noise space spanned by spectral interferents (see
[4] and references therein). When � approaches infinity, the GTR
solution approaches the NAS solution as the orthogonality condi-
tion Lb = 0 is given greater and greater weight. This observation
forms the basis of many calibration maintenance and transfer
methods (see [24,29,30] and the references contained therein)
and augmented classical least squares [31–35] procedures, which
decompose spectra into pure-component concentrations and
pure-component spectra. In summary, with GTR, concurrent pro-
cessing occurs with modeling. As � increases away from zero, the
degree of orthogonal correction to b increases, that is, b becomes
less oblique to L.

4. INVERSE PROCESSING

Spectral processing replaces the primary spectra X with pro-
cessed spectra in order to generate a calibration model that is
hopefully resistant to chemical and physical interferents. How-
ever, the resulting model vector b obtained by these multivari-
ate calibration techniques do not give much insight on how b
depends on the interferent spectra L and the associated parame-
ters ˇ, � , or �. In this section, we explicitly compute closed-form
expressions for GNAS, GLS, and GTR model vectors (termed bINV)
via pseudo-inverses of X and L. The construction of the model
vector b will be referred to as inverse processing. Unlike spectral
processing where the spectra were decomposed into two per-
pendicular components, inverse processing instead decomposes
the model vector into two perpendicular terms

bINV = bREG + bNAS, bREG 2 L and bNAS 2 L? (15)

such that bINV denotes the solution obtained by inverse process-
ing. The first term bREG is the only term that depends upon the
processing-specific regularization parameters ˇ, � , or �. The term
regularization generally refers to the process of how these param-
eters shrink the size of the model vector to obtain a statistically or
spectroscopically desired solution. The second term bNAS is in fact
the NAS solution, and it is completely unaffected by the choice of
these regularization parameters. In short, we show that the model
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vectors obtained by GNAS, GLS, and GTR inverse processing are
just nearby perturbations of the NAS solution.

Note that Equation (15) is true for other model vectors
obtained without GNAS, GLS, or GTR processing, for example,
using PLS with the original X. Thus, with Equation (15), it is possi-
ble to determine the degree of non-orthogonality (obliqueness)
of the final vector to the interferents. To accomplish this analy-
sis, the interferent spectra L would be needed to compute bNAS.
Mathematically, if bPLS is a PLS model vector computed using the
original X without processing, then

bREG = bPLS – bNAS

and bREG would be represent the degree that bPLS is shifted from
orthogonality defined by bNAS.

4.1. Inverse processing by pre-multiplication

In spectral processing, we post-multiply X by P and then apply a
multivariate calibration procedure to the linear system (XP)b = y
to obtain b. In the inverse processing, the sequence of processing
steps changes. When we take the pseudo-inverse of XP and solve
for b,

(XP)b = y ) b = (XP)�y = P�g, where g = X�y (16)

we are not processing the spectra X but instead the ordinary least
squares solution g is processed by pre-multiplication with P�.

The ordinary least squares solution X�y in Equation (16) does
not typically yield the best spectroscopically plausible solution.
As a result, g = X�y can be replaced with a regularized least
squares solution generated by PLS or PCR (or some other multi-
variate calibration technique). In this paper, the vector g will be
replaced with a PLS model vector.

4.1.1. Net analyte signal inverse processing

The pseudo-inverse of the NAS processing matrix P = In – QQT is
itself. Hence, the NAS inverse processing solution in Equation (16)
is

bNAS = P�g = (In – QQT)g =
�

Q?QT
?

�
g (17)

From this perspective, NAS inverse processing projects the least
squares solution g into L?—the subspace orthogonal to the
subspace spanned by spectral interferents.

4.1.2. Generalized net analyte signal inverse processing

The solution b in Equation (16) using GNAS inverse processing is
generically expressed as the following:

bGNAS = P�g = (In – ˇL�L)–1g, ˇ ¤ 1 (18)

Using the SVD of L and the inversion formula in Appendix C, the
GNAS solution can be split into two solution components:

bGNAS = bREG + bNAS (19)

where

bREG = QFQTg, F =
1

1 – ˇ
Ik = diag(f1, : : : , fk), where fi =

1

1 – ˇ
(20)

and bNAS is the same solution as in Equation (17). Note that the
solution component bREG is an oblique projection of g onto the

space spanned by L. Recall that g in Equation (20) is defined in
Section 4.1 as a PLS model vector.

The solution bGNAS will approach bNAS when bREG goes to
zero. Recall that with NAS-processed spectra, XGNAS = X(In –
ˇQQT) approaches XNAS as ˇ approaches 1. However, the GNAS
inverse solution does not share this limiting behavior. When ˇ

approaches 1, the regularized component bREG = (1 – ˇ)–1QQTg
“blows up” to ˙1 (a consequence of the inverse matrix P–1 =�
In – ˇQQT�–1

becoming increasingly rank deficient and singular)
and bGNAS diverges away from bNAS. For bREG to converge to zero, |ˇ|
must approach 1. Hence, GNAS has an asymptotic dichotomy,
depending upon whether X or g is being processed.

4.1.3. Generalized least squares inverse processing

The solution b in Equation (16) using GLS inverse processing is
the following:

bGLS = P�g =
�

In + �LTL
�1/2

g (21)

Using the SVD of L and the inversion formula in Appendix C, the
GLS solution can also be expressed as the sum of two terms:

bGLS = bREG + bNAS (22)

where bNAS is the same solution as in Equation (17) and

bREG = QFQTg, where F =
�

Ik + �R2
� 1

2

= diag(f1, : : : , fk), fi =
q

1 + � r2
i

(23)

Again, we remind the reader that g in Equation (23) is defined in
Section 4.1 as a PLS model vector.

As in the GNAS case, there is a similar asymptotic dichotomy
with GLS as well. When the processed spectra XGLS = X(In +
�LTL)–1/2 approaches XNAS as � approaches1, the inverse solu-
tion bGLS instead diverges away from the NAS solution because
the regularized component bREG blows up. Recall that the admis-
sible range of � value lies in the interval

�
–1/r2

1,1
�
. For bGLS to

converge to bNAS, bREG must go to zero, and this happens when

fi =
q

1 + � r2
i goes to zero, or � ! –1/r2

1 from the right.

Note that if the processing matrix P used a positive exponent

instead of a negative one, that is, P =
�
In + �LTL

�1/2
instead of

P =
�
In + �LTL

�–1/2
, then the diagonal element in Equation (23)

would have been fi = 1/
q

1 + � r2
i and bREG would go to zero as

� !1.

4.2. Generalized Tikhonov regularization
inverse processing

For GTR, the inverse solution of Equation (13) (written here again
for clarification) �

X
�L

�
b =

�
y
0n

�
(24)

can be explicitly solved using one of the two methods:

(1) Transformation to the standard TR problem and transforma-
tion back [36,37].

(2) Constrain X and L to share the same loading vectors using the
generalized SVD (GSVD) [36]

1
3
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The solutions for these methods were first derived in the numer-
ical analysis literature [36,37] without spectroscopic applications
in mind. For a unique solution b to exist, m � n (that is, X
cannot have fewer rows than columns). This condition does not
apply to the vast majority of spectroscopic data sets—unless one
performs an aggressive data compression or feature selection
ahead of time. However, in practice, the first method suffices—it
is straightforward to implement even when m << n and yields
solutions that are unique enough (the solutions are stable, well
behaved, and reproducible). The second method involves GSVD
and is only of theoretical interest—it allows one to see the inter-
relationship between GTR and the NAS solution. First, we will
describe the first method in greater detail.

4.2.1. Transformation to standard form and back

The method of GTR seeks to solve the linear system in
Equation (24), which is equivalent to the following optimization
problem:

min��(b), where ��(b) = ||Xb – y||2 + �2||Lb||2 (25)

Utilizing the variable transformations

NX = XL�X , Nb = Lb, Ny = y – XbNAS

L�X =
h

In – X�NASX
i

L�
(26)

where XNAS is defined in Equations (5) and (25) can be rewritten as
the standard TR problem (or RR in the transformed variables):

min��( Nb), where ��( Nb) = || NX Nb – Ny||2 + �2|| Nb||2 (27)

The standard TR problem in Equation (27) is equivalent to the
following augmented linear system:�

NX
�Ik

�
Nb =

�
Ny
0k

�
(28)

Recall that Ny in Equation (28) is defined in Equation (26) as a func-
tion of bNAS, which in turn is defined in Equation (17) as bNAS =�
In – QQT�g, where g is PLS model vector. As there are multiple

versions of bNAS (one version for each PLS latent vector), there are
multiple versions of Ny. As a result, there are multiple solutions Nb
in Equation (28)—one for each PLS latent vector. After solving for
Nb, we transform back to recover the original solution bGTR:

bREG = L�X
Nb,

bGTR = bREG + bNAS

(29)

The matrix L�X is called the X-weighted generalized inverse of L
and can be written as

L�X =
h

In – X�NASX
i

L� =

�
In –

�
X
�

In – QQT
���

X

�
L� (30)

In most instances, the interferent spectra L have fewer samples
than wavelengths (k << n) and Equation (30) can be used. How-
ever, if L has at least as many rows than columns (k � n) and has

full column rank, then QQT = In and XNAS = X(In – QQT) = 0

in Equation (30). In this case, L�X reduces to the ordinary pseudo-

inverse L�.

Although an explicit solution for b can be constructed using
Equation (29), this equation does not shed light on how bGTR

depends upon the regularization parameter �. This requires the
GSVD of X and L, which will be discussed next.

4.2.2. Generalized singular value decomposition of X and L

In the GSVD discussion to follow, we require that X have full col-
umn rank, which implies that m � n. As this is not feasible for
most spectroscopic data sets, we will augment X with a multiple
of the identity matrix

X� =

�
X
� In

�
where � is very small, for example, � = 10–8. Although, � > 0
ensures that X� has full column rank, it should be optimized
as a tuning parameter for optimal performance. However, our
interest in this augmentation is to simplify the following GSVD
presentation and show the connection between GTR and NAS.

The matrix X� now has dimension q � n where q = m + n. The
GSVD of X� and L is given by [36]:

X� = OU OS OW–1 and L = V OT OW–1 (31)

Both the q � q matrix OU and the k � k matrix V are orthonor-
mal. It is useful to split OU into two matrices OU = [U, U?], where
U = [u1, : : : , uk] and U? = [uk+1, : : : , um] are orthogonal com-
plements of each other. The matrices OS and OT are “diagonal” with
the following structure:

OS =

24 S 0k,q

0q,k Iq

35 , S = diag(s1, : : : , sk), and

OT =


T, 0k,q

�
, T = diag(t1, : : : , tk)

where the diagonal elements si and ti are non-negative and
ordered in the following way: 0 � s1 � � � � � sk � 1 and
1 � t1 � � � � � tk � 0. The ratios �i = si/ti , i = 1, : : : , k are
referred to as the generalized singular values and are ordered in
ascending order. The rows of the n� n inverse matrix OW–1 are the
loading vectors that both X and L share. The matrix OW can also
be split into two matrices OW = [W, W?], where W = [w1, : : : , wk]
and W? = [wk+1, : : : , wn] span L and L?, respectively. Note that
the matrices P and R (associated with the SVD of L only) are not
the same as the matrices V and T. The matrices P and V span the
same space but correspond to different basis sets.

4.2.3. Generalized Tikhonov regularization inverse solution via
generalized singular value decomposition

The linear system we now work with�
X�
�L

�
b =

�
y�
0k

�
, where y� =

�
y
0n

�

is slightly different from the one in Equation (24) because of the
augmentation. The solution can now be given in terms of the
GSVD basis [36]:

bGTR = WFUTy� + W?UT
?y� = bREG + bNAS (32)
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where

F = diag(f1, : : : , fk), fi =
�2

i

�2
i + �2

bREG = WFUTy� =
kX

i=1

fi

 
uT

i y�
si

!
wi (33)

bNAS = W?UT
?y� =

nX
i=k+1

�
uT

i y�
�

wi (34)

If we were to replace X with X� in Section 4.2.1, then the
component-wise solutions bREG and bNAS in Equations (29) and
(32) would be equivalent. The shrinkage of bGTR depends entirely
upon the matrix F in the solution component bREG. As � ! 1, fi
goes to zero and bGTR approaches the NAS solution. Unlike GNAS
and GLS, there is no asymptotic dichotomy associated with GTR.
When �!1, both the spectral processing and inverse solutions
converge to the NAS solution.

4.2.4. Generalized net analyte signal and generalized least squares
spectral processing as generalized Tikhonov regularization
inverse processing

In this section, we show that GNAS and GLS spectral process-
ing can be viewed as a special case of GTR inverse processing. In

Equation (25), we replace the penalty term �2||Lb||22 with ||eLb||22,

whereeL = P–1 is the inverse of the n � n processing matrix asso-
ciated with either GNAS or GLS. It is important to note that we
are not augmenting X with a multiple of the interferent spectra
L. Instead, we augment X with the inverse of a processing matrix

P. As eL = P–1 is a square and invertible matrix, the matrix eL�X
(the X-weighted generalized inverse ofeL) simplifies toeL�X =eL� =
P. As a result, the variable transformations in Equation (26) are
simplified

NX = XP, Nb = P–1b, Ny = y

and the standard TR problem becomes

min��( Nb), where ��( Nb) = ||(XP) Nb – y||2 + �2|| Nb||2 (35)

Minimizing ��( Nb) in Equation (35) is the same as GNAS or GLS
spectral processing except that we solve the modified linear sys-
tem (XP) Nb = y by ordinary RR. From the perspective of GTR, GNAS
and GLS can be viewed as incomplete because there is no trans-
formation back to the original variable b. Continuing with GTR,
the transformation back to b is radically simplified becauseeL is
square and invertible: bGTR = P Nb.

4.3. Filter factor framework

We have observed that inverse processing yields a solution bINV

that can be decomposed into the sum of two terms:

bINV = bREG + bNAS

The role of the regularization parameters ˇ, � , or � is to shrink
the size of the regression vector components in bREG. The second
term bNAS is the same regardless of which inverse processing treat-
ment (GNAS, GLS, or GTR) is invoked. The shrinkage only occurs
in the bREG term via a filter factor mechanism involving a matrix

F = diag(f1, : : : , fk):

bREG =

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

QFQTg =
kX

i=1

fi

�
qT

i g
�

qi , fi =

(
(1 – ˇ)–1, GNASq

1 + � r2
i , GLS

WFS–1UTy� =
kX

i=1

fi

 
uT

i y�
si

!
wi , fi =

�2
i

�2
i + �2

GTR

(36)
Convergence of the inverse solution to NAS solution occurs when
bREG = 0 or F = 0k,k . For the different inverse processing
treatments, convergence occurs when the following happens: for
GNAS, when |ˇ| ! 1; for GLS, when � ! –1/r2

1; and for GTR,
when � ! 1. Filter factor representations of bINV by bPLS, bPCR,
and bRR have been described in [38].

5. EXPERIMENTAL AND IMPLEMENTATION

5.1. Data sets and partitions

5.1.1. Temperature data set

Twenty-two samples composed of water, ethanol, and 2-
propanol were measured from 590 to 1091 nm at 1-nm intervals
at temperatures 30ıC, 40ıC, 50ıC, 60ıC, and 70ıC [39]. Ethanol
was the analyte of interest and the spectra at temperature 30ıC
was used. Five out of the 22 spectra have zero analyte concen-
tration (including two pure-component interferent spectra), and
these comprised the interferent spectra L. Another spectrum out
of the 22 corresponds to a pure-component analyte spectrum
and was not used. The remaining 16 spectra were split into cali-
bration and validation sets of sample sizes 10 and 6, respectively.
(The calibration and validation split of the data was the same one
used in [39] but with the zero analyte samples excluded).

5.1.2. Corn data set

Eighty samples with four references—moisture, oil, protein, or
starch—are measured across three different instruments—m5,
mp5, and mp6 [40]. Moisture is the reference of interest. Spectra
were recorded over the range of 1100–2498 nm with measure-
ments taken at 2-nm intervals. Our task will involve calibration
transfer: build a calibration model on spectra measured on the
primary instrument m5 and predict samples from spectra mea-
sured on the secondary instrument mp5.

For the corn data set, there is no known default split of the
data. Using the same percentage of calibration and validation
samples as was used in the temperature data set: a 60%/40% cali-
bration/validation split whereby the first 48 samples are set aside
for the calibration set and the remaining 32 samples are used for
the validation set. The interferent spectra used to form L are the
difference spectra between instrument m5 and mp5 for the cal-
ibration set: the ith calibration spectrum from instrument m5 is
subtracted from the ith spectrum from instrument mp5.

5.2. Computational formulas and software

Listed in Table I are the equations used to the models for spectral
and inverse processing. The software used was written in MATLAB
(Release 2007b) [41]. In the interest of reproducible research, the
website www.hpc.unm.edu/�andriese will contain (in the
near future) all of the MATLAB scripts and the data sets used to
generate the results shown in this paper.
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Table I. Equations used to form respective models for spectral and inverse processing

Method Spectral processing Inverse processing

NAS Equation (5) Equation (17)

GNAS Equations (6) and (7) Equations (19) and (20)

GLS Equations (8) and (9) Equations (22) and (23)

GTR Equation (13) Equations (26)–(30)

6. RESULTS AND DISCUSSION

In this section, our goal is twofold:

(1) NAS approximation: We want to compare the convergences
of spectral and inverse processing solutions via GNAS, GLS,
and GTR to solutions obtained by NAS spectral and inverse
processing. When we compute the respective model vec-
tors, the maximal rank PLS vector is used. For example, PLS

is used to the solve the modified linear system eXb = ey in
Equations (2) and (3) for the spectral processing cases. We

select the model vector associated with maximal rank of eX,
that is, the rth PLS latent vector where r = min{m, n} with
m and n being the number of rows of columns, respectively,

ofeX. For the inverse processing cases associated with GNAS
and GLS, we compute b = P–1g, where g is the least squares

solution X�y. (Alternatively, one can use PLS and select the
maximal rank model vector.) For GTR inverse processing, we

compute bGTR = L�X
Nb + bNAS, where Nb and bNAS are the maxi-

mal rank PLS solution vectors associated the linear system in
Equation (28) and XNASb = y, respectively.

(2) Comparison of GNAS, GLS, and GTR to NAS and PLS: We
also want to compare processing solutions via GNAS, GLS,
or GTR to the solutions obtained by PLS and NAS. In this
case, all possible PLS latent vectors are used. The spectral
and inverse processing solutions will be denoted by bPROC and
bINV, respectively. Model solutions are compared by predic-
tion errors of the validation samples. The logarithm (base 10)
of root-mean-square error of validation (RMSEV) values are
tabulated for various combinations of ˇ, � , �, and the num-
ber of PLS latent vectors. The number of loading vectors from
the SVD of L is fixed to two different values for each data set
as noted in the next section. We make no attempt to find
the optimal regularization parametersˇ, � , and�, associated,
respectively, with GNAS, GLS, and GTR, as well as the optimal
number of PLS latent vectors. This attempt would be the sub-
ject of in-depth study for another paper. Again, the paper’s
focus is theoretical development.

With respect to building a calibration model, we opt for aug-
menting a vector of ones to the calibration and interferent spec-
tra such that

QX = [X, 1m] and QL = [L, 1k]

The processing matrix P is then formed using QL such that the
linear system

( QXP) Qb = y or

�
QX
P

�
Qb =

�
y

0k

�
is solved for Qb using spectral or inverse processing. The model
vector Qb = [b1, : : : , bn, bn+1]T consists of the original vector
b = [b1, : : : , bn]T and an offset bn+1. (The augmentation causes
the hyperplane-of-fit to go through the origin in an enlarged
(n + 1)-dimensional space.) The prediction Oy of a novel spectrum
z = [z1, : : : , zn]T involves a similar “vector-padding” by a 1 (Qz =
[z1, : : : , zn, zn+1]T) and the following dot-product:

Oy = QzT Qb = zTb + bn+1

6.1. Approximation to the net analyte signal solution

In Sections 2 and 3, the spectral and inverse processing solu-
tions bPROC and bINV, respectively, converge to the NAS solution
as their corresponding regularization parameters (ˇ, � , and �)
approach certain limiting values. In Table II, we summarize the
limiting parameter regimes (and values used) associated with the
NAS approximation.

6.1.1. Temperature data set

For GNAS, the processing matrix P = In – ˇL�L = In – ˇQQT

weights all of the loading vectors qi the same. For effective per-
formance, however, are all of the loading vectors necessary? In
Figure 1, the singular values r1, : : : , r5 of L for the temperature
data set are plotted along with the variance explained for the first
l (1 � l � k = 5) loading vectors. The percentage of the vari-
ance explained for the first l loading vectors is defined as 100 ��Pl

i=1 r2
i

�
/
�Pk

i=1 r2
i

�
. The first two loading vectors capture over

Table II. Limiting parameter regimes for NAS approximation

Spectral processing Inverse processing

GNAS ˇ ! 1 (ˇ = 0.9999) ˇ !˙1 (ˇ = 10, 000)

GLS � !1 (� = 99, 999, 999) � ! c+, c = –1/r2
1 (� = –0.99999999)

GTR �!1 (� = 106) �!1 (� = 106)

Values in parentheses are the actual values used as a proxy for the limits in Figures 2 and 4.
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Figure 1. Temperature data singular values ri of L (left) and the variance explained by the first l (1 � l � k = 5) loading vectors of L (right).

Figure 2. Temperature regression vector comparison between GNAS, GLS, GTR spectral, and inverse processing for approximating the respective NAS
solutions. For A, B, and C, the top and bottom subfigures correspond to two and five loading vectors from L used to construct the processing matrices.

Figure 3. Corn data the singular values ri of L (left) and the variance explained by the first l (0 � l � k = 48) loading vectors of L (right). For display
purposes, only the results for the first 20 loading vectors are shown.1
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97% of the variance. Hence, we will examine the performance
of NAS, GNAS, GLS, and GTR by using the SVD approximation
L �

Pl
i=1 rihiq

T
i at l = 2 (rank 2 approximation of L) and l = 5

(full-rank reconstruction of L).
Figure 2 shows solutions (or regression vectors): GNAS (A), GLS

(B), and GTR (C). Each subplot has four solutions: spectral pro-

cessing by NAS (blue), inverse processing by NAS (red), respective
spectral processing at the limiting value of the regularization
parameter (light blue), and respective inverse processing at the
limiting value (yellow). For GNAS, GLS, and GTR, the respective
upper and lower subplots correspond to the solutions associated
with the number of loading vectors used: l = 2 and l = 5. In the

Figure 4. Corn regression vector comparison between GNAS, GLS, and GTR spectral and inverse processing for approximating the respective NAS
solutions. For A, B, and C, the top and bottom subfigures correspond to 3 and 48 loading vectors from L used to construct the processing matrices.

Figure 5. Temperature log10(RMSEV) maps for GNAS spectral and inverse processing across various regularization parameters: ˇ on the y-axis and
PLS latent vectors on the x-axis. The PLS models without processing occur at regularization parameter ˇ = 0. Spectral and inverse GNAS processing
approximate NAS processing at ˇ = 1 and ˇ = ˙100, 000.
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case of GLS, we have replaced L with its orthogonal loading vec-
tors (L := QT). In this way, we have control of the limiting value of
� : � ! –1 as opposed to � ! –1/r2

1, which is data set dependent.
Asymptotically, the spectral and inverse processing solutions

for GNAS, GLS, and GTR all approach their respective spectral and
inverse processing NAS solutions as their regularization parame-
ters approach their limiting values—see Table II. (For inverse pro-
cessing, the limiting values � = 99, 999, 999 and � = –0.99999999
were obtained by using Equation (10) with ˇ = 0.9999 and ˇ =
10, 000, respectively.) At two loading vectors, all four regression
vectors are approximately of the same size. With five loading vec-
tors, the inverse processing regression vectors are smaller than
the regression vectors associated with spectral processing.

6.1.2. Corn data set

In Figure 3, the singular values r1, : : : , rk of L for the corn data
set are plotted along with the variance explained for the first l
(1 � l � k = 48) loading vectors. The first three principal
components capture slightly over 96% of the variance. Hence,
we will examine the performance of NAS, GNAS, GLS, and GTR

by using the SVD approximation L �
Pl

i=1 rihiq
T
i at l = 3

and l = 48.

Figure 4 shows the GNAS, GLS, and GTR solutions (or regression
vectors) for the corn data set as they asymptotically approach
the NAS solution. Qualitatively, the behavior for the corn data
set is the same as the temperature data set—the inverse and

Figure 6. Temperature log10(RMSEV) maps for GLS spectral and inverse processing across various regularization parameters: � on the y-axis and
PLS latent vectors on the x-axis. The PLS models without processing occur at regularization parameter � = 0. Spectral and inverse GNAS processing
approximate NAS processing at � = 100, 000 and � = –1.

Figure 7. Temperature log10(RMSEV) maps for GTR spectral and inverse processing across various regularization parameters: � on the y-axis and
PLS latent vectors on the x-axis. The PLS models without processing occur at regularization parameter � = 0. Spectral and inverse GNAS processing
approximate NAS processing at � = 100, 000.1
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spectral processing solutions converge to their respective NAS
solutions. The exception is for GTR at full-rank—only the GTR
inverse processing solution converges to the NAS inverse pro-
cessing solution. The GTR spectral processing regression vector
is much smaller in size than all of the other regression vectors.
As with the temperature data set, the oscillatory behavior of the
regression vectors of the corn data set is better behaved when
using fewer loading vectors.

6.2. Temperature and corn root-mean-square error of
validation behavior across ˇ, � , and �

Unlike the previous section, we do not want to stress test the
spectral and inverse processing solutions by pushing the regular-
ization parameters (ˇ, � , and �) to their respective limiting values,
that is, removing as much interferent information as possible in
order to achieve the NAS solution. Instead, this section reports on

Figure 8. Corn log10(RMSEV) maps for GNAS spectral and inverse processing across various regularization parameters: ˇ on the y-axis and PLS latent
vectors on the x-axis. The PLS models without processing occur at regularization parameter ˇ = 0. Spectral and inverse GNAS processing approximate
NAS processing at ˇ = 1 and ˇ = ˙100, 000.

Figure 9. Corn log10(RMSEV) maps for GLS spectral and inverse processing across various regularization parameters: � on the y-axis and PLS latent
vectors on the x-axis. The PLS models without processing occur at regularization parameter � = 0. Spectral and inverse GNAS processing approximate
NAS processing at � = 100, 000 and � = –1.
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Figure 10. Corn log10(RMSEV) maps for GTR spectral and inverse processing across various regularization parameters: � on the y-axis and PLS latent
vectors on the x-axis. The PLS models without processing occur at regularization parameter � = 0. Spectral and inverse GNAS processing approximate
NAS processing at � = 100, 000.

studying prediction behavior when varying amounts of interfer-
ent information is retained in the processes of consisting of none
(NAS), some (GNAS, GLS, and GTR), and all (PLS).

In Figures 5–10, we examine the RMSEV values on a log10 scale
across a range of regularization parameters: –100, 000 � ˇ �

100, 000, –1 � � � 100, 000, and 0 � � � 100, 000. Each sub-
plot in Figures 5–7 shows—from left to right—the RMSEV values
associated with the temperature data set for inverse processing
with two loading vectors, spectral processing with two loading
vectors, inverse processing with five loading vectors, and spec-
tral processing with five loading vectors. (The choice of two and
five were based on the variance explained in Figure 1.) Similarly,
each subplot in Figures 8–10 shows the RMSEV values associated
with the corn data set for inverse processing with three loading
vectors, spectral processing with three loading vectors, inverse
processing with 48 loading vectors, and spectral processing with
48 loading vectors. The x-axis corresponds to the number of PLS
latent vectors used in the construction of the inverse and spectral
processing solutions. Hence, each color-coded cell corresponds
to an RMSEV value for a particular number of PLS latent vectors,
regularization parameter, and type of processing used (inverse or
spectral) for a given number of loading vectors.

For GNAS inverse processing and GLS spectral processing, the
red cells are for ˇ = 1 and � = –1, respectively. For GNAS
inverse processing, bREG is undefined for ˇ = 1 in Equation (19),
whereas for GLS spectral processing, the filter factor fi is unde-
fined for � = –1 in Equation (9). Each subplot also shows two
horizontal bands across regularization parameters correspond-
ing to the PLS and NAS solutions: ˇ = � = � = 0 for ordinary
PLS solutions (no interferent used), ˇ = 1 for GNAS spectral pro-
cessing approximation to NAS, ˇ = ˙100, 000 for GNAS inverse
processing approximation to NAS, � = 100, 000 for GLS spectral
processing approximation to NAS, � = –1 for GLS inverse pro-
cessing approximation to NAS, and � = 100, 000 for spectral and
inverse processing approximation to NAS.

For the temperature data set, we highlight some of the gen-
eral trends. Relative to the RMSEV values obtained by ordinary
PLS, improved performance appears possible by removing some
interferent information. Similarly, compared with NAS process-
ing, improved performance is possible including some interferent
information. For GNAS and GLS (the schemes that do not involve
augmentation), using fewer loading vectors of L results in an
increase in the number of cells that have lower RMSEV—a likely
consequence of the benefit derived by shedding the spurious
noise associated with the latter set of loading vectors. On the
other hand, GTR derives a modest boost in performance when
using more loading vectors with spectral processing. For the corn
data set, the trends are similar.

7. CONCLUSION

For spectral and inverse processing using GNAS and GLS,
the respective ˇ and � tuning parameters have asymptotic
dichotomy for convergence to the orthogonal NAS. Conversely,
as the tuning parameter �!1 for either GTR spectral or inverse
processing, GTR converges to orthogonal NAS. From the results
presented, GTR is best used in the spectral processing format.
It should be noted that while PLS is used as the second regu-
larization for GTR spectral processing, that is, the latent vectors
serve as the second tuning parameter, using a more continuous
regularization parameter can provide different results [24,25].

The interferent matrix L can include any artifact that the model
needs to be desensitized to as in the orthogonal NAS processing
examples previously noted [10–21]. It may be that improvements
are possible in these references by using oblique adjustment via
GNAS, GLS, or GTR. Regardless of the approach, it is generally
found that when interferent spectra are isolated from the cali-
bration samples with reference values and weighted by ˇ, � , or
�, fewer calibration reference samples are needed to form the
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calibration model [9,22] as well as the possibility of complete
elimination of reference samples [23].
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APPENDIX A: MATHEMATICAL EXPRESSION
OF GLS PROCESSING MATRIX

The strategy for spectral processing in [8,9] involves the post-
multiplication X by a covariance matrix involving interferent
spectra. Borrowing from the notation of [8], suppose X can be
rewritten as a mixture of pure and interferent spectra

X = CSS + (CLL + E)
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where CS and CL represent the analyte concentrations for the
pure-component spectra S and interferent spectra L, respectively,
and E represents the unknown residuals in X. The matrix CLL +
E is the contribution to the spectral mixture due to unwanted
chemical and physical interferents and noise. As a result, the
expression

† = cov(CLL + E) = LTcov(CL)L + cov(E) (A1)

designates the “uncertainty” covariance. As in practice one does
not know cov(CL), Martens et al. [8] replaced it with a simplified
covariance model �LTL. Likewise, cov(E) is unknown in prac-
tice and replaced with In, that is, a covariance matrix where all
wavelengths are uncorrelated and have unit variance. As a result,
Equation (A1) simplifies to

† = LTcov(CL)L + cov(E) = In + �LTL

The processing matrix now becomes

P = †–1/2 =
�

In + �LTL
�–1/2

(A2)

where the exponent –1/2 is a consequence of the weighted least
squares “pre-whitening” procedure whereby the inverse covari-
ance matrix†–1 is split into equal matrices—see [8, Appendix II]
for details.

APPENDIX B: OUTER PRODUCT OF
BLOCK MATRICES

Let the n � n matrix C be split into sub-matrices such that C =
[C1, C2], C1 = [c1, : : : , ck] and C2 = [ck+1, : : : , cn]. Furthermore, let

D =

"
D1 0k,q

0q,k D2

#

where D1 and D2 are matrices of dimension k�k and q�q where
q = n – k. Then the matrix A = CDCT can be expressed in terms of
an outer product:

A = CDCT = [C1, C2]

"
D1 0k,q

0q,k D2

#
[C1, C2]T = C1D1CT

1 + C2D2CT
2

If C = OQ = [Q, Q?] (using the SVD notation from Section 2.2) is
orthonormal, then the inverse (or pseudo-inverse) of A can also
be written as an outer product sum:

A� =
�
OQD OQT

��
= OQD� OQT = [Q, Q?]

�
D1 0k,q
0q,k D2

��
[Q, Q?]T = QD�1 QT + QT

?D�2 QT
?

Moreover, if the diagonal elements of D1 and D2 consist of
positive entries, then any matrix power r (positive or negative,
fractional or integer) of A can be expressed as

Ar =
�
OQD OQT

�r
= OQDr OQT = [Q, Q?]

�
D1 0k,q
0q,k D2

�r

[Q, Q?]T = QDr
1QT + Q?Dr

2QT
?

APPENDIX C: GENERALIZED NET ANALYTE
SIGNAL AND GENERALIZED LEAST SQUARES
PROCESSING MATRICES

The decomposition of the GNAS or GLS processing matrix
requires two facts from linear algebra involving the orthonormal
matrix OQ = [Q, Q?]: In = OQ OQT = QQT + Q?QT

?
and�

OQ

�
D1 0k,q

0q,k D2

�
OQT
	r

= QDr
1QT + Q?Dr

2QT
?

from Appendix B where the diagonal matrices D1 and D2 have
positive entries.

The GNAS processing matrix P in Equation (6) and its inverse
can now be written as

P =
�

In – ˇL�L
�

= QQT + Q?QT
? – ˇQQT

= Q(Ik – ˇIk)QT + Q?QT
?

= (1 – ˇ)QQT + Q?QT
?

and

P–1 =
�

(1 – ˇ)QQT + Q?QT
?

�–1
=

1

(1 – ˇ)
QQT + Q?QT

?

Similarly, the GLS processing matrix P in Equation (8) and its
inverse can be written as

P = (In + �LTL)–1/2

=
�

QQT + Q?QT
? + �QR2QT

�–1/2

=
�

Q
�

Ik + �R2
�

QT + Q?QT
?

�–1/2

= Q(Ik + �R2)–1/2QT + Q?QT
?

= Q(Ik + �R2)–1/2QT +
�

In – QQT
�

= In – Q
h

Ik – (Ik + �R2)–1/2
i

QT

and

P–1 =
�

Q(Ik + �R2)QT + Q?QT
?

�1/2
= In –Q

h
Ik – (Ik + �R2)1/2

i
QT

1
4

0
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