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Multivariate calibration methods such as par-

tial least-squares build calibration models that

are not parsimonious: all variables (either

wavelengths or samples) are used to define a

calibration model. In high-dimensional or large

sample size settings, interpretable analysis aims

to reduce model complexity by finding a small

subset of variables that significantly influences

the model. The term ‘‘sparsity’’, as used here,

refers to calibration models having many zero-

valued regression coefficients. Only the vari-

ables associated with non-zero coefficients

influence the model. In this paper, we briefly

review the regression problems associated with

sparse models and discuss their spectroscopic

applications. We also discuss how one can re-

appropriate sparse modeling algorithms that

perform wavelength selection for purposes of

sample selection. In particular, we highlight

specific sparse modeling algorithms that are

easy to use and understand for the spectrosco-

pist, as opposed to the overly complex ‘‘black-

box’’ algorithms that dominate much of the

statistical learning literature. We apply these

sparse modeling approaches to three spectro-

scopic data sets.

Index Headings: Sparsity; Wavelength selection;

Sample selection; Partial least square; Support-

vector regression.

INTRODUCTION

A disadvantage of traditional multi-
variate calibration (MC) methods such
as partial least squares (PLS) and
principal component regression (PCR)
is that they produce calibration models
that are not parsimonious; all of the
regression coefficients in the calibration
model (or regression vector) are non-
zero. As a result, all wavelengths are
used in the prediction of unknown
samples. Such methods offer little in-
sight into the relative physical impor-
tance of different wavelengths. In
addition, the weight or influence from
irrelevant wavelengths, however small,
can have deleterious effect on predic-
tion, since they contribute to unwanted
noise.

In spectroscopy, there is a need to
prune large data sets, in both the number
of samples and wavelengths, to a
manageable size, to find only those
samples and wavelengths that meaning-

fully span useful analyte-predictive in-
formation. ‘‘Wavelength selection’’
refers to the identification of wave-
lengths relevant to a particular calibra-
tion model. In spectroscopy, wavelength
selection has a long history; notable
examples include interval PLS,1 genetic
algorithms,2,3 selectivity ratios,4 and
variables important for projection.5

However, in the last decade, advances
in sparse methods, a new class of
computationally efficient wavelength-
selection methods, have made the prob-
lem of reducing model complexity
tractable for large data sets.6–12 The
intent of this paper is to give an
introduction, overview, and perspective
on sparse methods.

Our perspective on sparse methods
focuses on how wavelength and sample
selection can be performed with the
same core set of algorithms. Moreover,
for the spectroscopist and the lay
statistician, these algorithms need not
be overly complex to understand and
implement. According to this perspec-
tive, we distinguish between two types
of sparse methods, sparse methods for
wavelength selection and sparse meth-
ods for sample selection. In the case of
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wavelength selection, a regression vec-
tor is generated, such that each regres-
sion coefficient is associated with a
particular wavelength. The larger the
coefficient magnitude, the greater the
weight or influence associated with the
corresponding wavelength. Similarly,
with respect to sample selection, a
regression vector is generated, such that
each coefficient corresponds to a partic-
ular sample.

The paper is organized as follows: We
first describe sparse methods in general
for wavelength selection and discuss
some of their spectroscopic applications.
Next, specific approaches and imple-
mentations for wavelength selections by
using sparse methods are reviewed.
Then, we outline how sparse methods
for wavelength selection can be repur-
posed for sample selection. Regression
examples from three spectroscopic data
sets are examined with sparse methods,
followed by the conclusion and discus-
sion of future work.

As for notation in this paper, lower-
case and uppercase letters that are not
boldfaced correspond to scalars (e.g., x
or P). Lowercase and uppercase bold-
face symbols represent column vectors
(e.g., x) and matrices (e.g., X). The
subscripted symbols T, �1, and þ indicate
the transpose, inverse, and pseudo-
inverse, respectively. The symbol In

represents the identity matrix of dimen-
sion n. A diagonal matrix is indicated
via the ‘‘diag’’ notation, e.g., In =
diag(1, 1, . . . , 1).

A vector of n ones or n zeros is
indicated by 1n or 0n, respectively. The
element associated with the ith row and
jth column of the matrix A will be
denoted in two ways, aij or Aij.

In this paper, the m 3 n matrix X
represents spectra measured across m
samples and across n wavelengths or
frequencies, in which X = [x1, x2, . . . ,
xm]T, where xj = [xj1, xj2, . . . , xjn]T. The
vector y = [y1, y2, . . . , ym]T contains
the analyte concentration for each sam-
ple. The aim of multivariate calibration
is to estimate a model or regression
vector b = [b1, b2, . . . , bn]T that relates
X to y with best accuracy and precision.
We use the notation b[i] to denote the ith
regression vector obtained in an iterative
scheme. For the vector x = [x1, . . . ,
xn]T, we use the following two vector

norms to indicate its length or size, the
one norm jjxjj1 ¼ jx1j þ ::: þ jxnj and

the two norm jjxjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ ::: þ x2
n

p
.

It is commonplace to mean center the
calibration data X ¼ X� 1mx̄T and
y ¼ y� 1mȳ, in which x̄ and ȳ denote
the mean spectrum and mean response,
respectively, of the calibration samples.
Prediction on an unseen spectrum z is
then given by f ðzÞ ¼ ðz� x̄ÞTbþ ȳ.

THEORY: SPARSE METHODS
FOR WAVELENGTH
SELECTION

Most spectral data sets are character-
ized by a high-dimensional, low sample-
size setting, i.e., there are many more
wavelengths than samples. The number
n of wavelengths is typically on the
order of hundreds, thousands, or higher.
As a result, there is a strong desire to
separate meaningful wavelength features
from spurious or noisy ones. Sparse
methods provide a vehicle for perform-
ing this separation.

b ¼ ðSðkÞ þ cÞ=a

Standard Formulations. The mini-
mization problem minb

1
2
jjXb� yjj22 as-

sociated with ordinary least squares
generally overfits the data, a high-
variance (precision), low-bias (accuracy)
scenario. If we sacrifice some bias in
favor of decreased variance, then overall
prediction accuracy might be improved.
One way to decrease the variance and
increase the bias is to shrink the size of b
by adding a penalty term P(b) to
1
2
jjXb� yjj22. Different penalties gener-

ate different small-norm solutions. The
two-norm penalty PðbÞ ¼ 1

2
gjjbjj22 cor-

responds to ridge regression13 or Tikho-
nov regularization (TR):14

min
b

1

2

���Xb� y
���2

2
þ 1

2
g
���b
���2

2
ð1Þ

Although g controls the size of b (larger
g yields smaller-norm regression vec-
tors), none of the regression coefficients
bi is fully suppressed to zero.

The two-norm penalty in Eq. 1 can be
replaced with the one-norm penalty P(b)
= kjjbjj1:

min
b

1

2

���Xb� y
���2

2
þ k
���b
���

1
ð2Þ

The one-norm penalty shrinks many of
the coefficients bi to zero. (See the
‘‘Shooting Algorithm’’ section below for
an intuitive discussion of how the one-
norm penalty ‘‘zeros out’’ coefficients.)
As a result, only the wavelengths
associated with non-zero coefficients
play any role in prediction. This, in
effect, is wavelength selection. The one-
norm penalty parameter k controls both
the size and sparsity of b: A larger k
yields a greater number of zero-valued
coefficients.

The general idea of using one-norm
penalty methods for feature selection
dates back to the 1970s in the geophys-
ics literature.15–18 Two decades later in
statistics, the idea of using one-norm
penalty methods in regression was
popularized by Robert Tibshirani, who
coined the acronym LASSO, which
stands for least absolute shrinkage and
selection operator.19 The term LASSO
has come to dominant the literature
when describing the minimization prob-
lem of Eq. 2.

The penalty terms in Eq. 1 and Eq. 2
give each regression coefficient of b
equal weight. These penalty terms can
be easily modified to give the coeffi-
cients unequal weights:

min
b

1

2

���Xb� y
���2

2
þ 1

2
g
���Lb

���2

2
and

min
b

1

2

���Xb� y
���2

2
þ k
���Lb

��
1
ð3Þ

The matrix L in Eq. 3 is diagonal and
consists of positive entries. In the
statistics literature, the one-norm penalty
formulation of Eq. 3 is known as the
‘‘adaptive LASSO.’’20 By using the
following variable transformations X ¼
XL�1 and b̄ ¼ Lb, the minimization
problems in Eq. 3 can be rewritten in
terms of their standard penalty formula-
tions in Eq. 1 and Eq. 2:

min
b̄

1

2

���Xb̄� y
���2

2
þ 1

2
g
���b̄
���2

2
and

min
b̄

1

2

���Xb̄� y
���2

2
þ k
���b̄
���

1
ð4Þ

After solving for b̄ in Eq. 4, the model
vector b of interest can be recovered via
the relation b ¼ L�1b̄. The variable
transformation X ¼ XL�1 can be seen
as a rescaling of the spectra X on a
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wavelength-by-wavelength basis. Later,
we examine how this rescaling can be
exploited for purposes of wavelength
selection.

Multiple-Norm Formulations. Nu-
merical problems in Eq. 2 and Eq. 4 can
occur when (i) there are fewer samples
than wavelengths or (ii) the spectral
samples are highly collinear. Either
condition renders X rank deficient, and
as a consequence, numerical instabilities
arise. To correct this, we can combine
both the two-norm and one-norm penal-
ties of Eq. 1 and Eq. 2, respectively, into
a single mixed-norm expression:

min
b

1

2

���Xb� y
���2

2
þ 1

2
g
���b
���2

2
þ k
���b
���

1

ð5Þ

Eq. 5 can also be rewritten in an
augmented fashion:

min
b

1

2

���Xgb� yg

���2

2
þ k
���b
���

1
;

Xg ¼
X

gIn

� �
and yg ¼

y
0n

� �
ð6Þ

Note that minimizing the first two terms
in Eq. 5 or the first term in Eq. 6 is
equivalent to TR, the minimization of
Eq. 1. Effectively, the two-norm penalty
in Eq. 5 forces X to be full rank by
augmenting it with a multiple of the
identity matrix. The phrase ‘‘elastic net’’
often is used to refer to the minimization
problem associated with Eq. 5 or Eq.
6.21

In addition to overcoming numerical
instabilities inherent in the original
LASSO formulation of Eq. 2, the elastic
net formulation of Eq. 5 also addresses
another shortcoming of the LASSO: the
selection of a single wavelength versus
the selection of an entire interval of
highly correlated and neighboring wave-
lengths. If there is a group or interval of
wavelengths among which the pairwise
correlations are very high (e.g., neigh-
boring wavelengths associated with a
particular type of chemical bonding),
then the LASSO tends to select only one
wavelength from this group. This selec-
tion of a single archetypal wavelength
from the group can degrade performance
relative to the useful redundancy
achieved by using all wavelengths in a
group. A detailed discussion of the

grouping effect of the elastic net can
be found in Zou and Hastie’s work.21

Tuning Parameters. In the LASSO
problem of Eq. 2, one needs to optimize
the one-norm penalty parameter k on the
basis of the calibration spectra. If the
elastic net variant of the LASSO in Eq. 6
is used, then two parameters must be
optimized, k and g. Cross-validation
(CV) is one of the most commonly used
mechanisms for determining k and g, but
there are others. Examples include the L-
curve,22,23 Akaike or Bayesian informa-
tion criteria,24,25 the F-test,26 and boot-
strapping.27

In the case of CV, for example, a
diagnostic figure of merit such as the
root mean square error of CV
(RMSECV) is often plotted for each
(k, g) pair. Naı̈vely, one could choose
the parameter pair with the lowest
RMSECV, but this usually results in
parameters that overfit the calibration
data.26 There are many other figures of
merit that one can use in conjunction
with RMSECV. An examination and
discussion of spectroscopically relevant
figures of merit for various LASSO
variants was recently undertaken by
Kalivas.23

Each penalty parameter has an effec-
tive range or interval from which
applicable nonnegative values can be
sampled. In the case of the two-norm
penalty parameter g, the effective range
is the interval [0, gmax], where gmax is
the largest singular value of X.22 In the
case of the one-norm penalty parameter
k, the effective range of values is the
interval [0, kmax], where kmax = fjc1j,
. . . , jcnjg, such that c = XTy.28 A
common sampling strategy for either
parameter is to select N values in an
exponentially decaying fashion, starting
from the maximal value and ending at
zero.22

APPLICATIONS: SPARSE
METHODS FOR
WAVELENGTH SELECTION

Although regression techniques such
as LASSO achieve parsimonious cali-
bration models, the selection of wave-
lengths that span useful analyte-
predictive information is not the only
reason for their utility in spectroscopic
analysis. We briefly highlight some
additional applications.

Calibration Maintenance and
Transfer. A calibration model has
limited applicability over time. The
primary spectra X represent the original
state of instrumental, chemical, physical,
and/or environmental conditions when
the spectra were originally measured.
Calibration maintenance seeks to main-
tain the primary calibration model for
spectra measured under new secondary
conditions that were not spanned in the
original calibration domain. One way to
accomplish this task is to augment the
secondary spectra to the primary spectra.
The concern of calibration transfer, on
the other hand, is in using a calibration
model developed under a primary in-
strument to predict spectral samples
measured on a secondary instrument.
(The secondary instrument can also be
the primary instrument at a later point.)

Suppose we replace the penalty 1
2
g2jj

bjj22 in Eq. 5 with 1
2
g2jjMbjj22, where M

is a matrix of secondary spectra. In
particular, suppose M is a p 3 n matrix
of interferent spectra; spectra not due to
analyte variation, but from spectral
interferences resulting from any combi-
nation of effects stemming from chemi-
cal, physical, environmental, or
instrumental sources. For example, when
detecting an analyte not normally present
in a sample (e.g., alcohol in human
tissue), the spectra X and M could be
made up of samples having non-zero-
and zero-valued analyte concentrations,
respectively. When a sample does not (or
cannot) have zero-analyte concentration,
the matrix of interferent spectra could be
obtained from samples having constant
analyte concentrations. The mean center-
ing of the constant-analyte spectra would
then yield M.

By using the matrix of interferent
spectra M instead of the identity matrix
In, Eq. 6 can be rewritten as:

min
b

1

2

���Xgb� yg

���2

2
þ k
���b
���

1
; Xg

¼ X
gM

� �
and yg ¼

y
0p

� �
ð7Þ

Minimizing 1
2
jjXgb� ygjj

2
2 by itself in

Eq. 7 approximates the following equal-
ity-constrained least-squares problem:
Solve Xb = y, subject to Mb = 0p.
Geometrically, the constraints Mb = 0p

are a statement about orthogonality: as g
increases, b is increasingly perpendicu-
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lar to the space spanned by the spectra in
M. Spectroscopically, the constraints
Mb = 0p attempt to desensitize the
primary calibration model against spec-
tral artifacts (the secondary conditions)
by pointing b away from the space
spanned by spectral interferents contain-
ing no analyte information.

Alternatively, Eq. 7 could also repre-
sent a calibration transfer scenario.
Suppose X1 and X2 are spectra mea-
sured from two different instruments
(the first and second instruments, re-
spectively). The difference spectra M =
X1 � X2 capture the spectral variation
associated with the differences between
these two instruments. The analyte
concentration associated with each dif-
ference spectrum in M is zero, since X1

and X2 have the same analyte concen-
trations. In this case, minimizing 1

2
jjXg

b� ygjj22 in Eq. 7 amounts to pointing b
away from the space spanned by instru-
ment noise.

Previous studies have shown that
wavelength selection alone can perform
calibration maintenance and transfer.29–32

By using Eq. 7, we hope to immunize the
primary calibration model against spec-
tral noise while simultaneously per-
forming wavelength selection. This aug-
mentation forms the basis of many recent
calibration transfer and maintenance
methods33–35 including augmented clas-
sical least-squares procedures, which
decompose spectra into pure-component
concentrations and pure-component spec-
tra.36–40 More recently, a comprehensive
review of two-norm and one-norm pen-
alties for sparse multivariate calibration
and maintenance was undertaken by
Kalivas.23

Sparse Principal Component Re-
gression and Partial Least Squares.
The dominant regression algorithms in
spectroscopy are PCR and PLS.

PCR and PLS can both be interpreted
as the decomposition of spectra into
matrix factors, i.e., X = URVT. The
matrices U and V are orthogonal and
have unit length (orthonormal). The
columns u1 and v1 are often referred to
as the score and loading vectors, respec-
tively. For PCR, the matrix R is
diagonal and consists of singular values.
For PLS, R is bidiagonal.41 PCR, as its
acronym suggests, utilizes principal

component analysis (PCA) to compute
the matrix factors.

The matrix decomposition X = URVT

allows one to easily compute the
pseudo-inverse of X, whereby Xþ =
VRþUT. The ordinary least-squares so-
lution is written as the linear combina-
tion of all the loading vectors b = Xþy
= Va = v1a1 þ . . . þ vnan, where a =
RþUTy. PCR and PLS create small-norm
solutions by projecting y onto a lower-
dimensional subspace spanned by the
first k loading vectors. This results in a
solution that uses only the first k loading
vector, in which b = v1a1þ . . . = vkak.
Sparse versions of PCR and PLS project
but also ‘‘sparsify’’ the loading vectors
v1, . . . , vk, meaning the resulting linear
combination b is sparse as well. There
are many approaches that create sparse
loading vectors,42–49 but most of them
qualitatively share a similar mechanism
for coefficient suppression in the score
vectors: they append the one-norm and
two-norm penalty terms of the elastic net
in Eq. 5 to the PCR or PLS optimization
machinery.

Meta-Feature Selection. The spectra
associated with a set of samples are
often measured in many modalities, e.g.,
different excitation sources, detectors,
channels, instruments, etc. As a result, a
larger heterogeneous set of spectra can
be concatenated vertically from spectral
blocks, i.e., X = [X1, . . . , XK], where
Xi is an m 3 n1 matrix of spectra
measured under a particular set of
modalities. The total number of wave-
lengths n = n1 þ . . . þ nK across all
blocks can be quite large, and perform-
ing wavelength selection on all n
wavelengths by using LASSO can be
daunting. To reduce the computational
burden, one might want to perform some
type of data dimension-reduction tech-
nique (wavelets, PCA, PLS, etc.) on
each spectral block. If PCA or PLS is
used, for example, then the ith spectral
b l o c k X i c a n be d e c o m p o s e d
(Xi ¼ UiRiV

T
i ), where the ni columns

of Xi are replaced with the first ri(ri �
ni) score vectors of Ui. Instead of
performing wavelength selection on X
= [X1, . . . , XK], one can perform
feature selection on the collection of
score vectors U = [U1, . . . , UK].

Alternatively, instead of compressing
the spectra within each spectral block,

one might want to suppress an entire
spectral block of wavelengths. The
group LASSO can perform suppression
at the group level.50 If the group sizes
are all one, then the group LASSO
reduces to the original LASSO. As a
result, one can use the group LASSO to
do ‘‘spectral block’’ selection where one
could identify, say, which excitation
sources and channels in tandem, con-
tribute most to the prediction of an
analyte.

LASSO APPROACHES

Since the original LASSO paper,
many algorithms have been developed
to solve the one-norm penalty problem.
Most algorithms have been minor vari-
ants of the original LASSO algorithm,
but a few have offered real insights into
how regression coefficients can be
suppressed or ‘‘zeroed out’’. In this
section, we highlight some of the more
insightful LASSO approaches. First, we
give a brief illustration of the simplest
and one of the earliest LASSO ap-
proaches: the shooting algorithm of Fu.6

Shooting Algorithm. For ease of
illustration, we examine Eq. 2, using
only one wavelength (n = 1). In this
case, the data matrix X gets simplified to
a vector of scalar values x = [x1, x2, . . . ,
xm]T, and we minimize a function of
only one variable:

min
b

1

2

Xm

i¼1

ðxib� yiÞ2 � kjbj ð8Þ

Although Eq. 8 is non-differentiable at b
= 0, we can still minimize the objective
by setting the derivative equal to zero
for b 6¼ 0:

Xm

i¼1

ðxib� yiÞxi þ k signðbÞ ¼ 0

� ab� c ¼ SðkÞ ð9Þ

(The minimization of non-differentiable
functions is often treated by using
subgradients.51) The scalars a = xT x
and c = xT y in Eq. 9 represent the
positive slope and intercept, respective-
ly, of the line, while S(k) = �ksign(b)
represents a step function. In Eq. 9, the
optimal value of b occurs where the line
ab � c intersects the step function S(k),
and the intersection can occur in one of
three ways (see Fig. 1). All we really
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care about is the intercept c. If c is
outside the interval [�k, k], as shown in
the left and right subplots of Fig. 1, we
solve for b in Eq. 9, where b = [S(k)þ
c]/a. However, in the middle subplot,
the intersection between the line ab� c
and S(k) occurs within the interval [�k,
k] on the y-axis, at b = 0. The larger k
is, the longer the length of the interval
on the vertical axis and the greater the
likelihood that b will be ‘‘suppressed’’,
or set to zero.

In the multivariate case, when the
number of wavelengths is greater than
one, the shooting algorithm starts with
an initial solution, often a regression
vector obtained by PLS or PCR. Next, a
coordinate descent approach is applied:
One cycles through each regression
coefficient bj in turn, minimizing it with
the aforementioned intersection ap-
proach while keeping all of the other
regression coefficients fixed, i.e., bi, i =
1, . . . , n, i 6¼ j.8 In effect, the shooting
algorithm ‘‘warm starts’’ with a non-
sparse solution and iteratively adjusts
the value of regression coefficients,
setting many of them to zero in the
process. Since the introduction of the
shooting algorithm, an extremely effi-
cient extension, colloquially referred to
as ‘‘glmnet,’’ was developed by Fried-
man et al.8

Least-Angle Regression. Suppose
we solve the LASSO problem in Eq. 2
or Eq. 5 with a large value k, such that

all of the regression coefficients are set
to zero, the sparsest calibration model of
all. We then reduce the value of k by a
very small amount and solve the LASSO
problem again. We repeat this process
for a total of N times until k is zero. This
procedure generates a sequence of k
values k0, k1, . . . , kN and a set of
corresponding regression vectors b[0],
b[1], . . . , b[N], where b[1] is the
regression vector associated with its
corresponding penalty parameter k1.
However, if the change between the
adjacent values of k1 and kiþ1 is small
enough, then the number and position of
the non-zero coefficients between the
corresponding regression vectors b[i]

and b[iþ1] might not change. Hence,
there will be a great deal of wasted
computation for no qualitative change in
solution.

Least-angle regression (LAR)7 calcu-
lates the largest jump possible between
adjacent values k1 and kiþ1, such that
b[iþ1] is the same as b[i], except for one
additional non-zero coefficient at anoth-
er position. Hence, LAR ‘‘cold starts’’
with the most sparse regression vector
b[0] (a regression vector of all zeros) and
builds, in a bottom-up fashion, n
additional regression vectors b[1], . . . ,
b[n] where b[1] contains i non-zero
coefficients. (The total number N of
LAR iterations is N = n). The final LAR
iterate b[n] corresponds to the ordinary
least-squares solution. There are two

primary LAR variants, ordinary LAR or
LAR with the LASSO modification. In
the ordinary LAR approach, wavelength
features are added in a greedy fashion—
one feature at a time. However, the
LASSO modification allows features to
be added or removed. As a result, the
total number N of LAR iterations will be
much greater than n in the modified
case. Unlike the shooting algorithm,
LAR does not require k as an input.
As a result, this makes LAR easier to
use than other LASSO methods. For
example, for a given k value in the
shooting algorithm, one does not know a
priori how many non-zero regression
coefficients will result after calibration.

The primary computational overhead
associated with LAR is that, at the ith
iteration, an i 3 i linear system must be
solved. Hence, for data sets with hun-
dreds or thousands of wavelengths, the
burden is minimal when i is small and
maximal when i is large. Therefore, one
might want to seek LASSO alternatives
that are not so computationally burden-
some. Iteratively reweighted least-
squares schemes (IRLS) provide one
such alternative.

Iteratively Reweighted Least
Squares. Suppose we have a priori
information regarding unequal weight-
ing for each element in b. For example,
assume that the regression coefficients
b1, b2, . . . , bn in b are random variables
that follow a normal distribution with

FIG. 1. For the shooting algorithm, the three ways that the line ab � c can intersect the step-like function S(k) = k sign(b). Sparsity, or
suppression of b, to zero only occurs when the line intersects the vertical line segment in the middle subplot.
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probability density function qðbÞ ¼
const 3 expð� 1

2
bTC�1

b bÞ and are inde-
pendently and identically distributed
with Cb, the corresponding covariance
matrix. The maximum likelihood esti-
mate (MLE) from statistics is then found
by minimizing:52

min
b

1

2

���Xb� y
���2

2
þ 1

2
bTC�1

b b ð10Þ

However, the MLE approach requires
a priori estimates of Cb, which are rarely
known in practice. To make the estima-
tion easier, we assume that the covari-
ance matrix is a diagonal matrix of
variances Cb = diag(r1, r2, . . . , rn),
with r1 representing the spectral noise
associated with the ith wavelength. In
the absence of measuring the same
spectra repeatedly and calculating the
sample standard deviation, we can
instead use the magnitude of the regres-
sion coefficient, derived from an initial
least-squares estimate, as a proxy for r1.

Let b[0] = (b1
[0], b2

[0], . . . , bn
[0])T be

an initial least-squares estimate from a
standard MC procedure such as PLS,
PCR, or TR. If the inverse of the
diagonal covariance matrix is expressed
as:

C�1
b ¼ k2L; where L

¼ diag
1���b½0�1

��� ;
1

b
½0�
2

��� ��� ; . . . ;
1

b
½0�
N

��� ���

0
B@

1
CA
ð11Þ

then the MLE problem in Eq. 10 can be
expressed as:

min
b½1�

1

2

���Xb½1� � y
���2

2
þ 1

2
k2
���Lb½1�

���2

2

ð12Þ

The solution update b[1] = (b1
[1],

b2
[1], . . . , bn

[1])T in Eq. 12 is a smaller-
norm version of the initial estimate b[0],
since the coefficient update bi

[1] is
penalized by Lii = 1/j bi

[k]j in Eq. 11.
If the magnitude of the previous update
jbi

[0]j is small (has little variance), then
Lii will be large, and bi

[1] will be driven
to zero. Such an approach was success-
fully used in wavelength selection by
Ottaway et al.53

The reweighting process of Eq. 12
can be repeated iteratively to obtain a

sequence b[0], b[1], b[2], . . . of regression
vectors. At the kth iteration, a regression
coefficient bi

[k] will be set to zero if its
magnitude is below some threshold, e.g.,
jbi

[k]j , s, where s = 10�8. The iterative
nature of Eq. 12 can be recast within a
larger framework of IRLS schemes54–57

that generate sparse regression vectors
for wavelength selection—see Table I.
Here, the regression coefficients from a
classical MC method are used (as
described next) to create a diagonal
matrix F[k] = diag( f1[k], f2[k], . . . ,
fn[k]), which rescales each column of X.

Each element fi[k] of the diagonal
scaling matrix is a mathematical expres-
sion involving the regression coefficient
from the previous iteration, i.e., bi

[k�1].
If the diagonal element fi[k] is approxi-
mately zero, then the ith wavelength of
the spectra can effectively be ignored. If
k diagonal entries of F[k] are zero, then
U[k] = XF[k] contains k columns that are
all approximately zero, and they can be
removed from consideration, where U[k]

is of dimension m 3 (n � k). The
diagonal scaling element at the kth
iteration is defined as:

f
½k�
i ¼ b

½k�1�
i

��� ��� or F½k�

¼ diag b
½k�1�
1

��� ���; b
½k�1�
2

��� ���; . . . ; b
½k�1�
n

��� ���� �
ð13Þ

Equation 13 is a special case of an
iterative technique, developed in the
signal processing community, called
the focal underdetermined system solu-
tion algorithm, or FOCUSS.55,56

In the signal- and image-processing
communities, the sparse methodologies
outlined in this paper are often referred
to as ‘‘compressive sensing’’, and IRLS
algorithms of the type outlined in Table
I are commonplace.57–59 In the chemo-
metrics literature, diagonal weighting
schemes using a variety of mathematical
expression for fi[k] have been success-

fully employed for wavelength selec-
tion.54,60,61

The sparse iterative framework in
Table I is appealing in that no sophis-
ticated optimization-based solvers are
required; sparse calibration models can
be obtained by the simple recycling of
regression coefficients obtained from
conventional MC methods. Moreover,
the sparse iterative framework allows for
even faster algorithms by taking advan-
tage of advances within conventional
MC methods. For example, randomized
algorithms (e.g., randomized PCA) con-
struct approximate matrix factorizations
of the data by using random sampling to
quickly capture the subspace that ex-
plains the dominant variability, or ‘‘ac-
tion’’, of a matrix.62–65 As a result, these
randomized algorithms can handle mas-
sive data sets, unlike conventional
algorithms (such as ordinary or deter-
ministic PCA). Extensive numerical
experiments have shown that these
algorithms often outperform their deter-
ministic counterparts in terms of accu-
racy, speed, and robustness. Hence, in
Table I, one can use PCR for the
regression engine in step 2, with PCA
being replaced with a randomized PCA.

SPARSE METHODS FOR
SAMPLE SELECTION

In this section, we define sparse
methods for sample selection, i.e.,
finding a predictive subset of samples.
Instead of generating an n-dimensional
regression vector whereby each regres-
sion coefficient has a one-to-one corre-
spondence with a particular wavelength,
we generate an m-dimensional regres-
sion vector, whereby each regression
coefficient has a one-to-one correspon-
dence with a particular sample or
spectrum. The sample selection ap-
proach we propose involves the recast-

TABLE I. Iteratively reweighted least-squares scheme for wavelength selection.

Step Instruction(s)

0 Solve Xb[0] = y for b[0], using PLS, PCR, or TR; set k = 1

1 Form scaling matrix F[k] = diag( f
½k�
1 , f

½k�
2 , . . . , f

½k�
n )

2 Solve U[k]b[k] = y by using PLS, PCR, or TR for b[k], where U[k] = XF[k]

3 Recover b[k] by using back-substitution b[k] = F[k]b[k]

4 Set k = k þ 1 and go to Step 1.
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ing of support-vector regression (SVR)
as a LASSO problem.

SVR, like other regression approach-
es, strives to find an optimal hyperplane
of fit by minimizing the residuals
ri ¼ xT

i b� yi, but unlike other regres-
sion approaches, the optimization ma-
chinery used to define the hyperplane is
qualitatively different.66–68 There are
many SVR variants, and the one we
opt for allows for a direct link with the
elastic net variant of the LASSO.

The linear SVR variant we use solves
the following unconstrained minimiza-
tion problem:

min
a

1

2
aTðKþ g2ImÞa� aTyþ k

��a
��

1

ð14Þ

where K = XXT is called the kernel
matrix.54,66–68 Instead of solving for the
primal regression vector b = [b1, b2,
. . . , bn]T (one coefficient for each
wavelength) as we did in the LASSO,
we solve for the dual-regression vector a
= [a1, a2, . . . , an]T (one coefficient for
each sample). The primal regression
vector is related to the dual solution a
via a linear combination of the spectra:

b ¼ XTa ¼
Xm

i¼1

aixi

¼ a1x1 þ � � � þ anxn ð15Þ

Like the LASSO, the one-norm pen-
alty in Eq. 14 creates a sparse dual-
regression vector a. The samples asso-
ciated with the non-zero coefficients ai

are referred to as the ‘‘support’’ vectors,
since they alone contribute to the
summation in Eq. 15. Note that the
dual-regression vector is sparse and not
the primal regression vector, since it is a
linear combination of dense spectral
measurements. In addition, the SVR
formulation in Eq. 14 can easily be
generalized to nonlinear regression (via
a nonlinear kernel66,67), but we restrict
ourselves in this paper to the linear-
regression setting.

To see the connection between SVR
and LASSO, we note that the kernel
matrix K = XXT is symmetric, positive
semi-definite (all of its eigenvalues are
nonnegative), and this property allows
us to take fractional powers of K via
singular-value decomposition (SVD):
Kp = URpUT, where U is a matrix of

singular vectors (the orthogonal score
vectors of X), and R is a diagonal matrix
of singular values. Using the variable
transformation of Franklin:69

K̄ ¼ K
1
2 and ȳ ¼ K�

1
2y ð16Þ

we can rewrite Eq. 14 as:54

min
a

1

2

���Kga� yg

���2

2
þ k
��a
��

1
; where

Kg ¼
K̄

gIm

� �
and yg ¼

ȳ
0m

� �

ð17Þ

As a result, Eq. 17 is the same as the
elastic-net variant of the LASSO in Eq.
6, except for the substitutions: K̄g for X,
ȳg for y and a for b. We denote Eq. 17
as SVR–LASSO. When k is zero, all of
the samples are support vectors and
SVR simplifies to what is known as
kernel-ridge regression.66 Kernel-ridge
regression amounts to the solution of the
linear system K̄a ¼ ȳ via TR, where the
primal regression vector is recovered via
the relation b = XT a in Eq. 15. (Note
that the solution a to either linear
systems Ka ¼ y or K̄a ¼ b̄ is the same.)

The functional equivalence between
SVR–LASSO in Eq. 17 and the LASSO
variant in Eq. 6 means that all of the
LASSO algorithms used for wavelength
selection can be re-appropriated for
sample selection. For example, LAR
can now be applied to Eq. 17 to generate
a sequence of support-vector solutions
a[0], a[1], . . . , a[m], where a[i] contains i
non-zero coefficients. Alternatively, one
can use the iterative framework of IRLS
to solve Eq. 17 (see Table II) for sample
selection purposes.

REGRESSION EXAMPLES AND
PRACTICAL
IMPLEMENATION

In this section, we present examples
in which classical MC methods are
compared with their sparse counterparts.
We also compare sparse methods for
wavelength selection and sample selec-
tion.

We show the profile of regression
coefficients as a function of wavelength
and the RMSE values as a function of
the number of wavelengths or the
number of latent vectors. To demon-

strate the simplicity of the regression
methods for wavelength and sample
selection, code will be available at
www.hpc.unm.edu/;andriese. All of
the software was written in MATLAB,
release 2010b.

Data Sets. We here examine three
data sets: corn,70 wheat,71 and blood72

for purposes of wavelength and sample
selection.

The corn data set consists of 80
samples of corn, with 700 absorbances
measured from 1000 to 2498 nm, at 2
nm intervals on three near-infrared
(NIR) spectrometers, designated m5,
mp5, and mp6. Reference values are
provided for oil, protein, starch, and
moisture content. Protein content is the
prediction property studied in this paper,
and the spectra measured on instrument
m5 serves as the primary calibration set.
Unlike the other two data sets, there are
no designated calibration and validation
sets. To construct such sets, we arbi-
trarily split the 80 samples into halves,
with the calibration data consisting of
the first 40 samples, with the remaining
samples composing the validation data.

The wheat data set consists of 884
spectral samples (777 calibration and
107 validation samples) of whole-grain
Canadian wheat, measured by diffuse
reflectance spectroscopy. The calibration
samples represent samples grown in
years 1998 and 2000–2005. The valida-
tion samples were grown in 1999 and
are quite separate from the calibration
samples. There are 1038 wavelengths
from 400 to 2499 nm, at 2 nm intervals.
There are many references associated
with this data set, but we are only
interested in percentage protein content
for each sample. This data set was
featured in the ‘‘NIR Shootout’’ data of
the 2008 International Diffuse Reflec-
tance Conference in Chalmersburg, PA.

The blood data set consists of 553
blood samples (472 calibration and 81
validation samples), obtained from 13
healthy human volunteers. Reference
values for blood glucose range between
30 and 500 mg/dL. Spectroscopic data
were collected with a Fourier transform
NIR spectrometer, with 260 absorbances
measured between 4000 and 8000 cm�1.
The blood samples were pumped
through a borosilicate flow cell with a
nominal pathlength of 1 mm, which was
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temperature controlled at 34 6 0.5 8C.
Only spectra in the regions 4200–4950
and 5400–7200 cm�1 were analyzed (the
truncated region 4950–5400 cm�1 is
associated with the water band), for a
total of 164 wavenumbers.

For all three data sets, no modifica-
tions or preprocessing treatments (other
than the initial mean centering) were
made. In the statistics literature, it is
commonplace to scale the data to have
unit variance across variables, especially
when the variables are measured in
different units. However, in spectroscop-
ic applications where all of the variables
are measured on the same scale (e.g.,
absorbance units), there is no need to
standardize the variables. The data sets
analyzed here were not scaled to have
unit variance across wavelengths.

Sparse Principal Component Anal-
ysis. For an illustration of sparse PCA,
we compute the first three loading
vectors associated with the calibration
samples of the corn data set. The sparse
PCA implementation that we used is
based on a gradient-based optimization
scheme called G*Power.46 (G*Power is
an acronym for gradient power analy-
ses.) In Fig. 2, we compare the first three
loading vectors v1, v2, v3, computed by
ordinary PCA (red curves), with the first
three sparse loading vectors ṽ1; ṽ2; ṽ3,
computed by G*Power (yellow curves).
In G*Power, one can increase the
sparsity per loading vector by changing

a tuning parameter called the sparsity
weighting factor.46 (Here, the sparsity
weighting factor was set to 0.11 for each
loading vector.) The first sparse PCA
loading vector is practically identical to
the loading vector associated with ordi-
nary PCA. However, the second and
third G*Power loading vectors show
increasing amounts of sparsity. If one
were to use only these three loading
vectors ṽ1; ṽ2; ṽ3 for PCR, then the
regression vector (a linear combination
of these vectors) would still not be
sparse, since the zero-valued elements
across all three loading vectors do not
overlap. For truly-sparse loading vec-
tors, one would have to increase the
sparsity weighting factors.

Shooting Algorithm. The shooting
algorithm solves the elastic net variant
of the LASSO in Eq. 5. This algorithm
requires a ‘‘guess’’ for the initial regres-
sion vector, and we choose the TR
solution of Eq. 1 with the two-norm
penalty parameter fixed at g = 10�6.
Here, we also use the calibration sam-
ples of the corn data set. Keeping g =
10�6 fixed, we then choose three one-
norm penalty parameters: k1 = 5.9 3
10�6, k2 = 5.9 3 10�5, k3 = 5.9 3 10�4.
(These k values correspond to kmax

being divided by 100 000, 10 000,
and 1000, respectively, where kmax =
5.9 is the effective upper boundary on k,
above which all regression coefficients
are set to zero.) We then compare the TR

model vector bTR, with the three corre-
sponding LASSO model vectors b[1],
b[2], b[3], associated with k1, k2, k3. The
results are shown in Fig. 3.

In Fig. 3A, all four regression vectors
are shown across all wavelengths. As the
one-norm penalty parameters increase,
the regression vectors become sparser.
Figure 3B is the same as Fig. 3A, except
that the x-axis has been restricted
between 1850 and 2200 nm. For the
largest one-norm penalty, the non-zero
coefficient profiles coalesce around two
wavelength intervals or bands.

The shooting algorithm is also repre-
sentative of any algorithm that requires
k as an input: For a given k value, one
does not know a priori the number of
non-zero regression coefficients that will
result after calibration. A two-fold
change in k could result in a drastic
change in the number of wavelengths.
Hence, it would be more spectroscopi-
cally intuitive to vary the number of
wavelengths as opposed to varying k.

Wavelength Selection via Least-
Angle Regression and Iterative Re-
weighting Least Squares. We compare
two MC wavelength-selection methods,
IRLS by using PLS in Table I and LAR
against PLS. In the case of LAR, we use
the DTU-LAR, a LAR implementation
from the SpaSM (sparse statistical
modeling) toolbox, developed at DTU
(the Danish acronym for the Technical
University of Denmark).73 Ordinary

FIG. 2. Comparison of the first three loading vectors, computed by ordinary PCA (red), and the first three loading vectors, computed by
sparse PCA (yellow).
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LAR (as opposed to the LASSO mod-
ification of LAR) is used. The second
wavelength selection is the IRLS frame-
work of Table I, with PLS as the base
MC method. We denote this method as
IRLS–PLS. Five IRLS iterations are
used.

In Fig. 4, the regression vectors for
PLS, LAR, and IRLS–PLS, determined
from the corn calibration set are shown.
For PLS, we compute 40 regression
vectors, such that the ith regression
vector uses the first i latent vectors
(Fig. 4A). By using LAR, 700 regres-

sion vectors are generated, such that the
ith regression vector contains i non-zero
regression coefficients (Fig. 4B). The
regression vectors associated with small
numbers of non-zero regression coeffi-
cients (or number of wavelengths used)
are illustrated in white and have large
amplitudes. As the sparsity decreases to
the point where most coefficients are
non-zero, the coefficient amplitudes are
commensurate with that of PLS when
using many latent vectors (the yellow
curves in Fig. 4B). For IRLS–PLS, 40
regression vectors are shown (one for

each number of latent vectors used) (Fig.
4C). Compared with ordinary PLS in
Fig. 4A, the regression vectors for
IRLS–PLS after five iterations in Fig.
4C are very sparse.

In Fig. 5, the RMSE results associated
with the model vectors in Fig. 4 are
shown. Figure 5A shows the RMSE
values for LAR as a function of the
number of wavelengths used in the
calibration model. Here, both the mini-
mum of both the RMSECV and
RMSEV (RMSE of validation) occurs
when 25 (out of 700) wavelengths are

FIG. 3. The left subplot shows the value of the regression coefficients as a function of wavelength for the corn data set. In TR, all 700
regression coefficients are non-zero. For the LASSO with the shooting algorithm, the number of non-zero coefficients decreases as the one-
norm penalty parameter increases. The right subplot is the same as the left except that the interval for the vertical x-axis has been restricted
to [�1850, 2200].

FIG. 4. The plot of regression coefficients as a function of wavelength for the corn data set across three methods: PLS, LAR, and IRLS–
PLS.
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used in the calibration model, or about
3.6% of the total number of wave-
lengths. Figure 5B displays the RMSE
values for both ordinary PLS and IRLS–
PLS after five iterations. In this case, the
iterative improvement over PLS is
significant. Figure 5C shows, for each
number of latent vectors used in the
calibration model for IRLS–PLS, the
percentage of wavelengths used. For the
corn data set, IRLS–PLS achieves a
lower RMSE over PLS, using consider-
ably fewer wavelengths.

Figure 6 displays the RMSE results
for the wheat data set. The same

description convention described in
Fig. 5 is used here as well. Wavelength
selection via LAR (Fig. 6A) and IRLS–
PLS (Fig. 6B) confers no advantage in
RMSE performance over ordinary PLS
(Fig. 6B). However, a well-performing
calibration model that is non-inferior to
PLS requires only a small percentage of
wavelengths, about 8% for LAR (Fig.
6A) and about 20% for IRLS–PLS (Fig.
6C). Evident in Figs. 6B and 6C is the
trade-off between two types of parsimo-
ny, parsimony in the number of latent
vectors and parsimony in the percentage
of wavelengths used. Although IRLS–

PLS performs as well as PLS when
using fewer wavelengths, IRLS–PLS
has to increase the number of latent
vectors to achieve the same level of
performance. The large discrepancy
between RMSEV and RMSECV is due
to the make-up of the calibration and
validation samples: the calibration sam-
ples are from years 1998 and 2000–
2005, while the validation samples are
from the year 1999. For the blood data
set in Fig. 7, the same description
convention is used as in Figs. 5 and 6.
As in the wheat data set, wavelength
selection is non-inferior RMSE-wise to

FIG. 5. Wavelength selection for the corn data set. (A) RMSECV and RMSEV values associated with least-angle regression (LAR). (B)
RMSECV and RMSEV values associated with PLS (red) and IRLS–PLS (cyan). (C) For each number of latent vectors, the percentage of
wavelengths used in the calibration model for IRLS–PLS.

FIG. 6. Wavelength selection for the wheat data set. The same description convention is used as described in Fig. 5.
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PLS. Unlike both the wheat data and
corn data sets, a larger percentage of
wavelengths (about 50%) are needed by
both LAR and IRLS–PLS to achieve
commensurate performance with PLS.
This increase in the percentage of
wavelengths used is likely due to the
typical heterogeneity of blood samples:
472 samples across 13 human volunteer
samples containing significantly varying
levels of hematocrit (the volume per-
centage of red blood cells in blood; the
other blood components are plasma,
white blood cells, and platelets).

For blood glucose, a particular type of

scatter plot, called the Clarke error grid
analysis74 (CEGA) plot, is of diagnostic
interest to clinicians. The CEGA plot
divides the clinical accuracy of blood
glucose (estimate, reference) coordinates
into five regions: A, B, C, D, and E (see
Figs. 10 and 11). Region A corresponds
to sufficiently accurate estimates that are
within 20% of their reference values.
The coordinates in region B contain
estimates that would not cause one to
embark on inappropriate diabetes treat-
ment. Region C contains estimates that
would lead to inappropriate diabetes
treatment. The coordinates in region D

represent a failure to detect hyperglyce-
mia (high blood sugar) or hypoglycemia
(low blood sugar). Region E contains
coordinates whose estimates would con-
fuse hyperglycemia for hypoglycemia,
and vice versa. Figure 10 contains the
CEGA plots for PLS (using 25 latent
vectors), LAR (using 30% of the
wavelengths in the calibration model),
and IRLS–PLS (using 25 latent vectors).
(The parameters 25 and 30% were
chosen arbitrarily; typically, these pa-
rameters would be chosen on the basis
of some model selection criteria.) The
CEGA plots report the (i) percentage of

FIG. 7. Wavelength selection for the blood data set. The same description convention is used as described in Fig. 5.

FIG. 8. Sample selection for the wheat data set. (A) RMSECV and RMSEV values associated with LAR. (B) RMSECV and RMSEV values
associated with PLS (red) and IRLS–PLS (cyan). (C) For each number of latent vectors, the percentage of samples used in the calibration
model for IRLS–PLS.
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coordinates in each region; (ii) the

RMSE of validation; (iii) the slope,

intercept and R-value of the line of fit;

(iv) the number of validation samples;

and (v) the percentage of wavelengths

used in the calibration.

Sample Selection via Least-Angle
Regression and Iterative Reweighting
Least Squares. As was the case with

wavelength selection, we compare LAR

and IRLS–PLS against PLS. For IRLS–

PLS, we follow the scheme in Table II,

with PLS as the base MC method. We

only examine the blood and wheat data

set, since they have sufficiently large

sample sizes. Figures 8 and 9 examine

the RMSE performance of these three

methods with respect to sample selec-
tion.

Figure 8 displays the RMSE results
for the wheat data set. In Fig. 8A, the
RMSE associated with LAR is shown as
a function of the percentage of samples
used in the calibration. The x-axis limit
only goes up to 75%, since fourfold
cross-validation was used; three-quarters
of the data were used in each fold. The
striking difference for LAR between
sample and wavelength selection is the
relative insensitivity of RMSE across a
large swath of sample percentages used.
In 10–70% of the samples used, the
RMSE values are approximately the
same. Figure 8B shows the RMSE
performance for PLS and IRLS–PLS,

with IRLS–PLS having commensurately
the same performance as PLS. As was
the case with wavelength selection,
IRLS–PLS uses considerably fewer
variables (samples in this case) than
PLS, but commensurate performance is
obtained only when more latent vectors
are used. Figure 9 displays the RMSE
performance for the blood data set. Here,
LAR achieves the same level of RMSE
performance as PLS. However, IRLS–
PLS requires almost double the number
of latent vectors to achieve the same
level of RMSE performance as PLS,
albeit with a fraction of the number of
samples. Figure 11 contains the CEGA
plots for PLS, LAR, and IRLS–PLS. It
has the same description convention as

FIG. 9. Sample selection for the blood data set. The same description convention is used as described in Fig. 8.

FIG. 10. Clarke error grid analysis (CEGA) plots associated with wavelength-selection methods: PLS (no wavelength selection) at 25 latent
vectors (or factors), LAR at 30% of the wavelengths used in the calibration model, and IRLS–PLS at 25 factors.
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Fig. 10, except that it reports the
percentage of samples used in the
calibration instead of the percentage of
wavelengths.

CONCLUSION AND FUTURE
WORK

We here reviewed some of the basic
mechanisms and implementations of
sparse methods, both for wavelength
and sample selection. By using SVR, we
adopted the perspective that wavelength
and sample selection are actually two
sides of the same coin. Furthermore,
using IRLS-based methods, we show
that sparse methods need not be overly
complex to implement. For example,
IRLS–PLS reuses an existing, off-the-
shelf, PLS implementation in a simple
iterative scheme to generate sparse
models.

Compared with classical MC methods
such as PLS, sparse methods are non-
inferior (and, sometimes, considerably
superior) in terms of RMSE perfor-
mance. Moreover, only a fraction of
the wavelengths or samples are needed
for an adequate calibration model. We

did not explore the alternating use of
wavelength and sample selection proce-
dures to construct a minimal spectral
subset of samples and wavelengths.

Extensions to Classification. In the
classification setting, say binary classi-
fication, the response variables are
discrete, e.g., y = [y1, y2, . . . , ym]T,
where the ith sample belongs to either
the positive or negative class, or yi =
f�1, þ1g. The regression algorithms
discussed here can easily be repurposed
for classification. For example, the
prediction on a novel spectrum can be
turned into a positive or negative class
label via the signum function:

sign½ f ðzÞ�; where f ðzÞ ¼ ðz� x̄ÞTbþ ȳ

ð18Þ

For classification, one can also employ
support-vector machines (SVMs). The
SVM does for classification what SVR
does for regression. Like SVR, the
prediction for a novel spectrum in a
SVM involves only support vectors that
correspond to non-zero coefficients of
the vector a = [a1, a2, . . . , am]T.

However, in the classical SVM, the
coefficients must be non-negative. On
the other hand, least-squares generaliza-
tions of SVMs have been developed that
loosen this non-negativity constraint
and, as a result, the modified SVMs
behave like SVR.75

Although SVMs are powerful classi-
fiers, linear discriminant analysis (LDA)
is still the dominant classification algo-
rithm in chemometrics and spectrosco-
py. LDA projects spectra onto the most
discriminative, low-dimensional sub-
space, and the classification is done in
this reduced space. Recently, a sparse
version of LDA was developed, such
that one obtains not only a sparse
regression vector, but also a set of
sparse basis vectors that span the
discriminative subspace.76

Massive Data Sets. Currently, most
spectroscopic data sets are not yet
sufficiently large. In other words, we
are still applying sparse methods to data
sets by using a standalone computing
entity such as a desktop or laptop.
However, spectral-imaging capabilities
that currently measure thousands of
spectral samples in a few minutes will
soon give way to hundreds of thousands
or millions of samples. As the spectral
data sets get inexorably more massive,
algorithms generating sparse regression
vectors might only be feasible on
distributed computing environments. In
addition, for process monitoring, in
which large quantities of spectra are
continuously collected and analyzed
over time, one might only have access

FIG. 11. Clarke error grid analysis (CEGA) plots associated with sample selection methods: PLS (no sample selection) at 25 latent vectors
(or factors), LAR at 30% of the samples used in the calibration model, and IRLS–PLS at 25 factors.

TABLE II. Iteratively reweighted least-squares scheme for sample selection.

Step Instruction(s)

0 Solve Ka[0] = y for a[0] by using PLS, PCR, or TR; set k = 1

1 Form scaling matrix F[k] = diag( f
½k�
1 , f

½k�
2 , . . . , f

½k�
n )

2 Solve U[k]a[k] = y by using PLS, PCR, or TR for a[k], where U[k] = XF[k]

3 Recover a[k] by using back-substitution a[k] = F[k]a[k]

4 Compute primal regression vector via the relation b[k] = X[T]a[k]

5 Set k = k þ 1 and go to Step 1
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to the data before the current data
instantiation is retired and replaced with
a new one. Moreover, with such large
volumes of spectra, one will also need to
be vigilant about the increased likeli-
hood of suspect data (e.g., inaccurate or
missing data). The reliability of sparse
methods is moot if the imprecision of
the input limits the resolution of the
output. As a result, it might be more
prudent to opt for fast, robust, or
incremental methods, as opposed to
sparse ones (ideally, we would like to
combine all of these traits).

We might also opt for data compres-
sion methods that find meaningful
subsets of existing samples and wave-
lengths prior to regression or classifica-
tion. In this context, subset selection
algorithms deserve attention. For exam-
ple, non–subset selection algorithms
such as PCA and PLS construct low-
rank approximations of the spectra.
However, what we gain in compression,
we lose in interpretation. The score and
loading vectors used in the approxima-
tion are meta-features, i.e., they are
linear combinations of all the wave-
lengths and samples, respectively. In-
stead of using linear combinations
involving all rows or columns, there
are algorithms, e.g., CUR matrix de-
compositions77 and rank-revealing QR
factorizations,78,79 which construct low-
rank approximations by using a small
number of the original rows (samples)
and/or columns (wavelengths). In this
case, interpretation and highly accurate
compression are simultaneously
achieved. After a subset selection algo-
rithm is applied to the spectra, a sparse
method can then be applied on the
reduced ‘‘original-feature’’ data set.
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