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Multivariate calibration leverages and spectral
F-ratios via the filter factor representation
Erik Andriesa,b∗ and John H. Kalivasc

Diagnostics are fundamental to multivariate calibration (MC). Two common diagnostics are leverages and spectral
F-ratios and these havebeen formulated formanyMCmethods such as partial least square (PLS), principal component
regression (PCR) and classical least squares (CLS). While these are some of the most common methods of calibration
in analytical chemistry, ridge regression is also common place and yet spectral F-ratios have not been developed
for it. Noting that ridge regression is a form of Tikhonov regularization (TR) and using the unifying filter factor
representation for MC, this paper develops the filter factor form of leverages and spectral F-ratios. The approach is
applied to a spectral data set to demonstrate computational speed-up advantages and ease of implementation for
the filter factor representation. Copyright © 2010 JohnWiley & Sons, Ltd.
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1. INTRODUCTION

Multivariate calibration (MC) methods in chemometrics are
powerful tools used by industry for quality and process con-
trol. In spectroscopy, for example, MC methods construct a
mathematical model that relates concentration or some other
sample property to the spectra of known calibration samples.
The constructed model is then applied to the spectrum of an
unknown sample to predict its concentration or other property.
Common MC methods include classical least squares (CLS),
principal component regression (PCR), Tikhonov regularization
(TR, also known as ridge regression under certain conditions)
and partial least squares (PLS) [1–4]. Diagnostics are important
to all MC methods. For example, if outliers are identified as
being present and are removed from the calibration set, greater
calibration accuracy can be achieved. However, if outliers are not
removed, then they can have a strong influence on the estimation
of the model parameters. During prediction, diagnostics are
used to detect outlier samples whose spectra are sufficiently
different from the calibration spectra. This paper focuses on
two common outlier diagnostic measures used for spectral
data—leverages and spectral F-ratios [5,6]. It should be noted
that these two diagnostic measures have pitfalls, e.g. lack of
statistical robustness and the curse of high dimensionality when
samples sparsely populate a high-dimensional wavelength space
[7–14]. Nonetheless, leverages and spectral F-ratios are still
widely used for outlier detection and are in fact recommended
by the American Society for Testing Materials [5]. Hence, the goal
of this paper is to present a unified computational framework for
this important class of widely used diagnostic measures.

In the chemometrics literature, there is a preference for
MC methods such as PCR and PLS that are projection-based
whereby high-dimensional calibration spectra are projected onto
a lower-dimensional subspace. Ideally, the resulting subspace
simultaneously includes and excludes components unharmed by
and dominated by noise, respectively, and calibration, prediction
and diagnostics are performed in this lower-dimensional sub-

space. However, calibration, prediction and diagnostics depend
not only on the number of dimensions kept but also on the type
of basis vectors used to form the subspace. For example, PCR,
as its name implies, operates in the subspace spanned by the
principal component directions formed by the singular value
decomposition (SVD) of the calibration data. PLS, on the other
hand, operates in the space spanned by the Krylov subspace [15–
21]. When either subspace spans the original calibration space,
then the calculation of diagnostics will yield the same result.
However, when the subspace is strictly a lower-dimensional
subspace (a subspace of lower numerical rank), then there will
be differences in the diagnostics since the model spaces used to
represent the reconstructed data come from different bases.

Ultimately, one has to choose which set of basis vectors to
work with. In this paper, we do not advocate one basis set
over another. Our interest is in the following: if we choose the
basis vectors derived from the SVD, then regression and the
diagnostics, leverage and spectral F-ratios, can be subsumed
under the umbrella of the filter factor representation. Moreover,
one can easily extend these two diagnostics to other MC methods
that are not projection-based such as TR. While a non-filter factor
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representation of leverage for TR has been developed [22–24], to
date, spectral F-ratio formulas for TR have not been developed in
the literature. The goal of this paper is to unify the computation
of leverages and spectral F-ratios for all MC methods under a
single framework. It is well known that MC methods such as CLS,
PCR, TR and PLS are functionally equivalent in how they perform
regression using the filter factor representation [17,19,25–28].
However, our focus is to show that these MC methods are also
functionally equivalent in how they compute leverages and
spectral F-ratios as well.

The paper is organized as follows: In Section 2, we discuss the
SVD and the need for regularized least squares other than CLS.
In Section 3, we discuss how regression-based MC methods are
unified under the filter factor representation and Section 4 details
how leverages and spectral F-ratios can be similarly unified via this
representation. Section 5 gives the numerical results and Section
6 states the conclusion.

All vectors are column vectors, unless otherwise indicated. Ital-
icized lowercase symbols represent scalars (x) while upright and
bold symbols represent vectors (x). Matrices are indicated with
upright boldface uppercase characters (X). The superscripted
symbols T and † indicate the transpose and pseudoinverse, respec-
tively, of a vector or matrix. A vector of n ones or zeros is indicated
by 1n and 0n, respectively, while In represents the identity matrix
of dimension n. An m by n matrix of zeros will be indicated by0m,n.
An m by p matrixA can be formed by concatenating p column vec-
tors a1, a2, . . . , ap of dimension m such that A = [a1, a2, . . . , ap].
The ıth row of the matrix A will be denoted by a·, i . Diagonal
matrices will be denoted using the MATLAB-like notation ‘diag’,
e.g. In = diag(1n) = diag([1, 1, . . . , 1]T). The m by n matrix X con-
taining the spectroscopic data consists of m samples stacked
row-wise such that X = [x1, x2, . . . , xm]T where the jth sample,
denoted as the column vector xj = [xj1, xj2, . . . , xjn]T, is an ele-
ment of the Euclidean n-spaceRn. The vectory = [y1, y2, . . . , ym]T

represents the response variables such that yj is the response vari-
able associated with the jth sample xj . In the context of analyte
concentration prediction from near-infrared spectra,X represents
calibration data of n absorbance measurements across m samples
and y represents m non-negative analyte concentration measure-
ments.

2. SVD AND REGULARIZATION

It is standard procedure to mean center (column-wise) the cali-
bration data:

X := X − 1mx̄
T, y := y − 1mȳ (1)

where x̄ = 1
m

(XT1m) and ȳ = 1
m

(yT1m) denote the mean spectrum
and mean response, respectively. Prediction for a future mean-
centered spectrum (z := z− x̄) can then be written as ŷ = ȳ +
zTb where b is the regression vector. Unless otherwise indicated,
it is assumed that X and y have already been mean-centered in a
column-wise fashion via Equation(1).

2.1. Singular value decomposition

When solving the linear systemXb = y, CLS decomposition tech-
niques such as LU or QR factorization will be numerically suspect
if X is ill-conditioned. The unreliability of computing the solution
vector b is best understood if we express b in terms of the full

SVD of X:

X = UfullSfullV
T
full

where Ufull is an m by m orthonormal matrix, Vfull is an n by
n orthonormal matrix and Sfull is an m by n diagonal matrix
of singular values. The non-zero singular values are arranged
in decreasing order such that s1 ≥ s2 ≥ · · · sr ≥ 0 where
r ≤ min(m − 1, n) is the rank of X. The matrices Ufull , Sfull and Vfull

associated with the full SVD of X can also be represented as

Ufull = [U,Unull], Sfull =
[
S 0r,m−r

0m−r,r 0m−r,m−r

]
, Vfull = [V,Vnull]

T

where U = [u1, . . . ,ur ] denotes the first r columns of Ufull ,
Unull = [ur+1, . . . ,um] denotes the last m − r columns of
Ufull , V = [v1, . . . , vr ] denotes the first r columns of Vfull and
Vnull = [vr+1, . . . , vn] denotes the last n − r columns of Vfull . Note
that when m > n and r = n, then Sfull = [S, 0r,m−r]T and Vfull = V.
The columns of the matrix U form an orthonormal basis for
the range of X (the space spanned by the columns of X) while the
columns of the matrix V form an orthonormal basis for the range
of XT (the space by the rows or calibration samples of X except
that each row is the transpose of a vector in Rn). The columns
of the matrices Vnull and Unull form an orthonormal basis for the
nullspace of XT and X, respectively, and will play a non-trivial role
in the computation of leverages and spectral F-ratios. Since Unull

andVnull are multiplied by the zeros in Sfull , the SVD of X is typically
written in its reduced form

X = UfullSfullV
T
full = USVT

The reduced SVD is often used to compute the generalized inverse
or the Moore–Penrose pseudoinverse of X where X† = VS−1UT.

Principal component analysis (PCA) is the SVD applied to mean-
centered data. PCA is among the most widely used techniques
in statistics, chemometrics, data analysis and data mining. PCA
also forms the basis of many regression and machine learning
methods. Computationally, PCA amounts to the low-rank approx-
imation of a matrix containing the spectra being analyzed.

2.2. Classical least squares and SVD

Using the Moore–Penrose pseudoinverse of X, the CLS solution
can be written as

bCLS = bCLS = X†y = VS−1UTy = V˛ =
r∑

i=1

˛ivi (2)

˛ = S−1UTy = [˛1, . . . , ˛r ]
T, ˛i = uT

i y

si

(3)

Due to the orthonormality of V, we have the following relation:
||bCLS||22 = ||V˛||22 = ||˛||22. Phenomenologically, the smallest sin-
gular values are typically associated with spurious noise inherent
in the data and singular vectors vi that are rough and highly
oscillatory in profile [17]. The division of uT

i y by a small singular
value si unduly amplifies the size of the vector-norm ofbCLS and, as
a consequence, the corresponding basis vector vi dominates the
CLS solution. Statistically, large-norm CLS solutions have low bias
and high variance. From a prediction point of view, large-norm
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solutions are associated with overfitting. Statistical techniques
such as PCR, PLS and TR shrink the size of the regression
coefficients in b in order to obtain a small-norm solution.

3. REGULARIZATION STRATEGIES

The term regularization generally refers to incorporating a priori
information into the regression model in order to stabilize the
regression vector against the effects of noise and to sift out a
spectroscopically plausible solution. Regularization, in this paper,
refers to obtaining small-norm solutions and can generally be
divided into two broad classes: projection and penalty methods.

In projection methods, the solution vector is restricted to span
a lower-dimensional subspace S consisting of k dimensions:

min
b∈S

�(b), �(b) = ||Xb− y||22 (4)

The regularization of projection methods depends upon the num-
ber of subspace dimensions kept. If k = r (i.e. full rank), then
the original CLS solution is recovered. However, it is hoped that
k << r with S containing only ‘pure’ components uncontami-
nated by noise. The two most common chemometric techniques,
PCR and PLS, are projection methods. In contrast to projection
methods, penalty methods filter out unwanted noise compo-
nents by adding a penalty term to the least squares problem:

min �(b), �(b) = ||Xb− y||22 + �d ||Mb− g||dd (5)

The type and amount of regularization is controlled by chang-
ing the parameters d, �, M and g. For example, the regression
problem known as ‘the LASSO’ corresponds to a L1-norm penalty
formulation of TR with the following parameters: d = 1, M = In
and g = 0 [29]. However, we will concern ourselves with the TR
form that is characterized by a L2-norm penalty term (d = 2). TR
withM = In andg = 0 is often referred to as the standard TR (STR)
problem whereas theM �= In case is referred to as the generalized
TR (GTR) problem [3]. Note that in the statistics literature, STR is
more commonly known as ridge regression [4].

Both STR or GTR can be thought of as the CLS solution applied
to the following augmented minimization problem:

min �(b), �(b) = ||X�b− y�||22 where

X� =
[
X

�M

]
, y� =

[
y

�g

]

The above equation essentially approximates the following
equality-constrained least squares problem: solve Xb = y
subject to the equality constraintsMb = g. In the seminal text by
Lawson and Hanson [30], three methods are specified for solving
equality-constrained least squares problems. The first two meth-
ods involve hard modeling approaches which rigorously satisfy
both Xb = y andMb = g to a high degree of accuracy. The third
method is a soft modeling approach and is precisely the penalty
approach of GTR. Instead of trying to rigorously satisfy both
Xb = y and Mb = g, GTR seeks a trade off between minimizing
the residual norm ||Xb− y||2 and the equality constraint norm
||Mb− g||2. Note that whenM = In in Equation (5), each element
of the vectorMb− g is equally weighted. Alternatively, � in Equa-
tion (5) can be replaced with � = diag(�1, . . . , �n) if one seeks to

give a different weight to each element ofMb− g. This approach
is often referred to as generalized ridge regression. In the chemo-
metrics literature, a thorough statistical analysis of ridge and
generalized ridge regression can be found in References [31,32].

We now briefly discuss how these projection- and penalty-
based regularization strategies can be accommodated by the
filter factor representation.

3.1. Regularization via filter factors

PCR, PLS and TR are often treated as disparate regression algo-
rithms. However, these methods can also be unified under a
broader class of methods called filter factor methods. These
methods aim to shrink the size of solution norm ||b||2 in Equa-
tion (2) by pre-multiplying S−1 by a diagonal filter factor matrix
F = diag(f) where f = [f1, f2, . . . , fr ]T so as to create a regularized
inverse X# = VFS−1UT. The regularized solution bREG can then be
expressed as a re-weighted version of the CLS solution:

bREG = X#y = VFS−1UTy = VF˛ =
r∑

i=1

fi˛ivi (6)

The matrix F also re-weights the square of the CLS solution norm
||bCLS||22 = ||˛||22 such that

||bREG||22 = ||VF˛||22 = ||F˛||22 =
r∑

i=1

f 2
i

(
uT

i y

si

)2

(7)

If fi is zero or small in magnitude, then the ıth dimension of the
SVD basis plays no or little role in constructing the solution vector.
If the filter factors fi are small for large i, then the regularization
scheme employed resembles a low-pass filter in signal process-
ing where the solution is smoothed by removing rough singular
vectors.

The filter factors associated with the common regression tech-
niques of PCR, STR and PLS are well known [17,19,25–28] and are
summarized below:

fi =




1 if i ≤ k ≤ r and 0 otherwise PCR

s2
i

s2
i + �2

STR

1 − Rk (s2
i ) PLS

(8)

where i = 1, . . . , r. For PCR, the regularization parameter is k—
the dimension of the subspace spanned by the first k singular
vectors. As a consequence, fi = 1 for the first k terms of Equation
(6) and fi = 0 for the remaining terms. For STR, the regularization
parameter is � > 0 and all r terms of Equation (6) are kept but
the filter factors are weighted such that f1 > f2 > · · · > fr where
fi ∈ [0, 1]. Effectively, terms in the SVD expansion associated with
large i (small singular values) are damped to a greater degree
than terms associated with small i (large singular values). For PLS,
the regularization parameter is k—the dimension of the Krylov
subspace denoted by

Kk (G,d) = span{d,Gd, . . . ,Gk−1d} (9)

where G = XTX and d = XTy. The term Rk (�) in Equation (8) is
the value of the Ritz polynomial of degree k evaluated at � = s2

i .
On average, the filter factors fi decay from 1 to 0 as i increases
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but the oscillatory nature of the Ritz polynomial can sometimes
cause fi to take values outside of the interval [0, 1]. A complete
derivation of the filter factors for each of these methods is found
in the Appendix.

3.2. Native basis set for PLS

It is important to note the association between the common
regression techniques of PCR, STR and PLS and their native
set of basis vectors used to span the calibration space of the
spectra. For PCR and STR, the basis vectors formed by SVD
are the standard choice. However, the basis vectors associated
with PLS are the Krylov subspace vectors in Equation (9) [18].
These vectors (i.e. Gid = (XTX)iXTy, i = 0, . . . , k − 1) rapidly
become linearly dependent in finite precision arithmetic as i

increases since successive vectors point more and more in the
direction of the dominant singular vector v1 [34]. After v1, the
next set of preferential directions are, on average,v2, v3 and so on.
Since the basis vectors of the Krylov subspace point preferentially
in the directions of the dominant singular vectors and since these
vectors capture most of the space spanned by the calibration
spectra, PLS tends to converge faster than PCR in terms of the
number of basis vectors used to form the regression vector. This
is a computational advantage over PCR and is one of the reasons
why it is used to solve large-scale linear systems. Yet, regression
vector computation does not imply subspace superiority in terms
of prediction. Using simulation studies of complex chemical
mixtures containing large number of components, Reference [35]
was unable to show any evidence to support that PLS performs
‘better’ than PCR for prediction. It is also important to note that
the Krylov subspace vectors are not actually used to compute
the regression vector since they do not form a good basis set. For
numerical stability, the Lanczos bidiagonalization procedure (LBP)
is often used to orthonormalize the Krylov subspace [17,21,33].

The LBP, at step k, creates a lower bidiagonal matrix R̃k of
dimension (k + 1) × k and two orthogonal matrices Ũk+1 and Ṽk

such that

X ≈ Ũk+1R̃kṼ
T
k (10)

where the matrix Ṽk forms an orthonormal basis for the vectors in
Equation (9). When applied to the normal equations, the Lanczos
bidiagonalization of X and y becomes the Lanczos tridiagonal-
ization of XTX and XTy. Instead of creating a bidiagonal matrix,
the LBP creates a bidiagonal matrix that is also symmetric, i.e.

a tridiagonal matrix T̃k such that T̃k = R̃
T
k R̃k and XTX = Ṽk T̃kṼk .

The zeros of the Ritz polynomial Rk (�) in Equation (8)—
called the Ritz values—also have the remarkable property of
being the eigenvalues of T̃k [15,17,21]. This connection between
the Ritz values and the eigenvalues of T̃k yields the following
crucial insight: the regularizing action of PLS is determined by
how well the Ritz values approximate s2

i (the singular values of
XTX). If a Ritz value has converged to s2

i , then Rk (s2
i ) = 0 and

f k
i = 1. However, if s2

i lies between Ritz values that have not con-
verged, then f k

i = 1 − Rk (s2
i ) can oscillate in value sinceRk (�) is a

polynomial of degree k. Details concerning the oscillatory nature
of the PLS-based filter factors can be found in References [17,19].
Since the convergence behavior of the Ritz values is not known
a priori, the filter factors for PLS are likewise not known a priori.

When solving Xb = y using the first k iterations of the LBP,
the pseudoinverse of the right-hand side of Equation (10) is used

to get

b = Ṽk R̃
−1
k Ũ

T
k+1y

In this Krylov subspace setting, PLS is a projection method. How-
ever, when the basis vectors are changed from Ṽk to the singular
vectors in V, then PLS behaves not like a projection method but
more like STR in the sense that the filter factors fi = 1 − Rk (s2

i )
are not binary and decay, on average, from 1 to 0.

PLS is only as good as the basis vectors used to represent
the regression vector. As the number of LBP iterations increases,
numerical round-off error can degrade the orthonormal integrity
of the matrices Ũk+1 and Ṽk in Equation (10). In the numerical
analysis literature, it is common practice to re-orthonormalize
Ũk+1 and Ṽk using modified Gram–Schmidt or Householder
re-orthonormalization procedures [17,36]. However, these
re-orthonormalization procedures are largely absent from
chemometric PLS software packages and have only recently
been brought to the attention of the chemometric community
[37]. If one uses many PLS factors to model data, then the com-
putation of the regression vector b and diagnostic merits such as
leverages and spectral F-ratios can be compromised when Krylov
subspace approaches are used without re-orthogonalization
since the matrices Ũk and Ṽk will be no longer orthogonal due to
catastrophic round-off error [17,36–38].

3.3. Non-standard filter factor procedures

Standard filtering procedures invoke a smoothness assumption:
the low frequency terms in the SVD expansion associated with the
largest singular values are the most important and should be kept,
while the high frequency terms corresponding to the smallest
singular values should be filtered out or damped. Although keep-
ing the dominant SVD expansion terms has been the primary tool
for data representation, it need not be the most effective strategy
for prediction. For example, in principle component selection, k

dimensions of the SVD subspace are kept but they are not nec-
essarily the first k dimensions. These k dimensions are chosen on
the basis on how well they are correlated with or how well they
predict the response variable y. IfF denotes the set of the chosen
k dimensions, then the corresponding filter factors are fi = 1 if i ∈
F and fi = 0 otherwise. In principle, the filter factors could be arbi-
trary. In practice, however, the filter factors are such that the sum∑r

i=1 fi generally ranges between 0 and the rank of the data r. This
sum is often referred to as the effective numerical rank or the effec-
tive degrees of freedom [17,26]. Regardless of which filter factors
are used, the overarching goal is to obtain the relation ||bREG||2 <

||bCLS||2 that yields good prediction for an unseen sample.

4. LEVERAGE AND SPECTRAL F-RATIOS
VIA A FILTER FACTOR REPRESENTATION

Many statistical diagnostic measures are available with MC meth-
ods. We concentrate on perhaps the two most commonly used
ones—leverage and the spectral F-ratio [5,6]. One use of these
diagnostic merits is for outlier detection [5,6]. In the discussion
that follows, the reader is reminded that both the calibration
spectraX and the validation spectrum z have already been mean-
centered relative to x̄ as described in Equation (1).

www.interscience.wiley.com/journal/cem Copyright © 2010 John Wiley & Sons, Ltd. J. Chemometrics (2010)
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4.1. Leverage

In a high-dimensional setting, the validation spectrum z will not
likely lie in the space spanned by the calibration spectra. Hence,
we have to consider the portions of z that lie and do not lie in
the space spanned by the calibration set. As a result, it will be
convenient to express the validation sample z as the sum of two
vectors lying in different orthogonal subspaces S1 (the range of
XT or the space spanned by the calibration spectra) and S2 (the
nullspace of X which is orthogonal S1):

z = Vfullw = [V,Vnull]

[
w

wnull

]
= Vw + Vnullwnull = z1 + z2 (11)

wherew andwnull are r- and (n − r)-dimensional, respectively, with
z1 = Vw ∈ S1 and z2 = Vnullwnull ∈ S2. The vectors z1 and z2 of z
also correspond to the following orthogonal projections:

z1 = Pz = (VVT)z, z2 = (In − P)z = (VnullV
T
null)z (12)

where P = VVT orthogonally projects any vector in Rn onto S1.
Since z1 and z2 belong to different orthogonal subspaces, we have
the Pythagorean relation: ||z||22 = ||z1||22 + ||z2||22. The decompo-
sition of z into its orthogonal components will be shown to
significantly impact how the spectral F-ratio merit can detect the
‘outlyingness ’ of z.

4.1.1. Mahalanobis distance

If the distribution of the calibration samples is spherical, then the
Euclidean distance could reliably be used to determine whether
the validation sample z is an outlier relative to the calibration
samples. However, if the distribution is not spherical but ellip-
soidal, then we would expect that the probability of z being an
outlier to depend not only on the distance from the origin but
also on the direction of the major and minor axes. That is, all
points lying on the surface of an ellipsoid will have the same dis-
tance. This distance between z and the origin is known as the
Mahalanobis distance, and will be indicated by d(z). In the case of
mean-centered data, d(z) is classically expressed as

d(z) =
√
zTC†z, C = XTX

m − 1

whereC is the sample covariance matrix. A contour plot of increas-
ing values for d(z) would result in series of ‘concentric’ ellipsoids
increasing in size about the origin.

4.1.2. Leverage via classical least squares

The diagnostic merit known as leverage is related to the Maha-
lanobis distance. Since X has already been mean-centered (as
opposed to the case where the intercept variable is included
such that Xpad = [X, 1n]), leverage is simply the square of the
Mahalanobis distance divided by m − 1

h(z) = d2(z)

m − 1
= zT(XTX)†z (13)

where h(z) denotes the leverage associated with the sample z.
Note that

zT(XTX)†z = ||(X†)Tz||2 = ||US−1VTz||2 = ||S−1VTz||2 = ||ˇ||2

where ˇ = S−1VTz = [ˇ1, ˇ2, . . . , ˇr ]T and ˇi = vT
i z/si . As a result,

Equation (13) can be rewritten as the square of the two-norm of
ˇ:

h(z) = zT(XTX)†z = ||ˇ||22 =
r∑

i=1

(
vT

i z

si

)2

(14)

Equation (14) also identifies the meaningful leverage con-
stituents: h(z) is being inflated by squared components of ˇ

associated with the division of small singular values, just as the
solution norm ||b||2 was similarly inflated in Equation (3).

The expression in Equation (14) is also related to the ‘hat’ matrix
H = X(XTX)−1XT that orthogonally projects y onto a subspace of
R

m (the range of X). When m ≥ n and X has full rank (r = n), then
the predicted values ŷ for the calibration set become

ŷ = XbCLS = XX†y = X(XTX)−1XTy = UUTy = Hy

The leverage for the jth calibration sample is then the value of
the jth diagonal element of H since h(xj ) = xT

j (X
TX)−1xj = Hjj . If

we interpret U and SVT as the score and loading matrices of X,
respectively, then the leverage value for the jth sample simply
becomes the sum of its corresponding squared score values:

h(xj ) = Hjj = (UUT)jj = ||uT
·, j
||22 =

r∑
i=1

u2
ji

Note that ˇ = S−1VTxj = uT
·, j

when xj = VSuT
·, j

. Hence, when z =
xj , we can regard the components of the vector ˇ as the score
values for the jth sample.

4.1.3. Leverage via regularized least squares

When the pseudoinverse of XTX in Equation (13) is replaced with
the regularized inverse of XTX, Equation (14) becomes

h(z) = zT(XTX)#z = ||(X#)Tz||2 = ||Fˇ||22 =
r∑

i=1

f 2
i

(
vT

i z

si

)2

(15)

Again, the filter factors are damping out terms associated with
small singular values. Geometrically, the filter factors preferen-
tially shrink the ellipsoid in the direction of the basis vectors of
V associated with small singular values, causing the ellipsoid to
become less oblate. When the validation sample is replaced with
the jth calibration sample, Equation (15) simplifies to

h(xj ) = xT
j (X

TX)#xj = ||Fˇ||22 = ||FuT
·, j
||2 =

r∑
i=1

f 2
i u2

ji

The hat matrix H similarly undergoes a ‘filtered’ modification

ŷ = XbREG = XX# = UFUTy = Hy

where H = UFUT and h(xj ) = Hjj .
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4.1.4. Relationship between leverage and the nullspace ofX

Recall that when we replace the validation sample z with the jth
calibration sample in Equation (14), leverage simply becomes the
sum of the squared score values:

h(xj ) = ||ˇ||22 = ||uT
·, j
||22 =

r∑
i=1

u2
ji

When the validation sample z does not coincide with a calibration
sample, then ˇ = [ˇ1, . . . , ˇr ]T can be regarded as validation
score values. It is important to note that the validation score
values ignore the nullspace portion z2 of z since

ˇ = S−1VTz = S−1VT(z1 + z2) = S−1VTz1

That is, the lengths of the minor axes associated with the ellip-
soidal distribution of the data in the direction of the basis vectors
of Vnull are zero. Hence, leverage only determines whether z1 is
an outlier, not whether z = z1 + z2 is an outlier, i.e. leverage only
identifies extreme samples that are far from the spectral space
spanned by the calibration samples. If meaningful predictions
are to be made, then the sparse calibration space inhabited by
outliers must be populated by additional calibration samples.
This aspect of leverage is both its strength and weakness as a
diagnostic merit for outlier detection. On one hand, the covari-
ance structure of the calibration data is rigorously adhered to.
On the other hand, the nullspace component z2 could contribute
significantly to the overall size of ||z||2 but the leverage fit of this
nullspace component will always be zero. The diagnostic merit
known as the spectral F-ratio will pay special attention to this
neglected orthogonal part of z.

4.2. Spectral F-ratios

4.2.1. Spectral residual via classical least squares

The CLS-based spectral residual associated with a sample z is
simply the nullspace component of z defined in Equation (12):

rP(z) = (In − X†X)z = (In − P)z = z2 (16)

where rP(z) denotes the spectral residual. The spectral residual
provides useful diagnostic information: unexpected components
in the validation spectrum that are not present in the calibration
spectra tend to show up in the spectral residual.

4.2.2. Spectral residual via regularized least squares

When the pseudoinverse X† is replaced with the regularized
inverse X# in Equation (16), we have

X#X = VFVT = Q (17)

Here,Qmaps the sample z onto a vector qz ∈ S1 such that

qz = Qz = VFVT(z1 + z2) = VFVTz1

Unlike P = VVT, the matrix Q = VFVT is not a projection matrix
since Q2 �= Q [15,21]. As a consequence, the spectral residual

associated withQ

rQ(z) = (In − Q)z = (
V(Ir − F)VT + VnullVnull

)
(z1 + z2)

= (z1 − qz ) + z2 (18)

differs from its counterpart rP(z) in Equation (16) in that rQ(z) is not
strictly an element of S2. Instead, rQ(z) consists of two orthogo-
nal components: the difference z1 − qz ∈ S1 and the orthogonal
nullspace projection z2 ∈ S2. The key term in Equation (18) is
V(Ir − F)VT—contributions to the spectral residual come only
from the minor axes of the hyperellipsoid and the nullspace pro-
jection z2 while contributions from the major axes are ignored.
This stands in stark contrast to leverage where greater weight is
given to leverage contributions associated with the major axes of
the hyperellipsoid while contributions from the minor axes or the
nullspace projection z2 are truncated or damped. Since the jth
calibration sample xj is already in S1, its spectral residual

rQ(xj ) = (In − Q)xj = (
V(Ir − F)VT + VnullVnull

)
xj = (xj − qj ) ∈ S1

(19)

consists of one subspace component: the difference between xj

and qj = Qxj = VFSuT
·, j

.

4.2.3. Spectral F-ratio via regularized least squares

The diagnostic merit known as the spectral F-ratio is simply the
ratio between the sum of the squared components of rQ(z) and
the average of the sum of the squared components of rQ(xi) across
all calibration samples. Using Equations (18) and (19), the spectral
F-ratio can be mathematically expressed as

ı(z) = ||rQ(z)||22
1
m

m∑
j=1

||rQ(xj )||22
(20)

where ı(z) represents the spectral F-ratio of z. See the ASTM docu-
ment in Reference [5] for details on how to use the spectral F-ratio
in determining whether the corresponding sample is an outlier.
Note that ||rQ(xj )||22 is also equal to the jth diagonal element of
the matrixMwhere

M = X(In − Q)2XT = US2(In − F)2UT = UDUT

and D = (In − F)2. Since U is orthonormal, the trace ofM is equal
to the trace of D and the summation in the denominator of
Equation (20) can be expressed as

m∑
j=1

||rQ(xj )||2 = trace(M) = trace(D) =
r∑

i=1

s2
i (1 − fi)

2 (21)

Using Equations (17) and (21), Equation (20) can now be com-
pactly expressed via filter factors as

ı(z) = ||(In − VFVT)z||22
1
m

r∑
i=1

s2
i (1 − fi)2

(22)
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5. NUMERICAL RESULTS

5.1. Data set: corn

The data analyzed consist of the corn data set of Reference [39].
This corn data set consists of 80 samples of corn that were mea-
sured from 1100 to 2498 nm at 2 nm intervals on three (NIR)
spectrometers designated as m5, mp5 and mp6. Note that every
other wavelength was used to reduce the total number of wave-
lengths from 700 to 350. Reference values are provided for oil,
protein, starch and moisture content. Protein is the prediction
property studied in this paper and the spectra measured on
instrument m5 serve as the primary calibration set.

5.2. Implementation

5.2.1. Software

MATLAB 7.04 (Release 2006a) was used in all numerical exper-
iments [40]. In the interest of reproducible research, the code
and data are available from the corresponding author upon
request.

5.2.2. PLS algorithms

We now want to carefully distinguish how the PLS algorithms
(filter factor and Krylov subspace versions) are implemented.
In the chemometric literature, there are two types of PLS
frameworks: bidiagonalization and conventional. These PLS
frameworks are discussed in detail in Reference [33]. We use
the bidiagonalization framework and, in particular, the LSQR
algorithm of Paige and Saunders which performs k steps of
the Lanczos bidiagonalization algorithm to solve the problem
min ||Xb− y||2 [41]. For the filter factor based implementation
of PLS, the MATLAB script lsqr.m (which implements the LSQR
algorithm of Paige and Saunders) from Regularization Tools by Per
Christian Hansen was used [42]. If one supplies lsqr.m with the
singular values s1, s2, . . . , sr of the calibration data X, then the set
of filter factors associated with the SVD expansion in Equations
(6) and (8) is also returned as the matrix Fmat = [f1, f2, . . . , fk ]
such that bPLS = VFS−1UTy is the filter factor based solution for
PLS solution where F = diag(fi). The filter factors in F are then
used in tandem with the matrices U, S and V (obtained from the
SVD of X) in order to compute the diagnostic measures. Note that
the vector of regression coefficients b returned by lsqr.m and
the regression coefficients returned by the SVD-based solution
VFS−1UTy are the same. We will refer to this implementation of
PLS as F-PLS to emphasize on the dependence on the filter fac-
tors. For the bidiagonalization approach using LSQR, the matrices
Ũk+1, Ṽk , R̃k obtained from the Lanczos algorithm in Equation
(10) will be used for both regression and computing leverages
and spectral F-ratios. We will refer to this implementation of PLS
as B-PLS to emphasize on the bidiagonal nature of the R̃k matrix.
In both F-PLS and B-PLS, re-orthonormalization using modified
Gram–Schmidt orthogonalization was performed to maintain
the orthogonal integrity of Ũk+1 and Ṽk [21].

5.2.3. Cross-validation procedure

Leverage and the spectral F-ratio can be calculated during the
prediction phase as well as the calibration phase for diagnos-
tic purposes. However, leverage and spectral F-ratio outliers in
the calibration samples should be calculated in a cross-validated
manner. The rationale is that when used for outlier detection,

the outlier calibration samples left out in the cross validation will
be poorly modeled and will consequently have large leverage
and spectral F-ratio values. All ndata samples in the data set will
be treated as calibration samples where ndata is the number of
samples in the entire data set and nfold-fold cross validation will
then be performed where nfold is the number of cross-validation
folds. For example, the corn data set contains ndata = 80 samples
and if nfold = ndata, then leave-one-sample-out cross validation will
be performed. In this paper, nfold is set to 10. To avoid cross-
validation results that are anecdotal to a particular ordering of
samples, we will perform norder rounds of nfold-fold cross valida-
tion where norder = 100 (with nfold = 10). The fold membership of
the samples will be randomly shuffled each round. We will now
explain how the results across the cross-validation rounds will be
combined.

The samples in each data set will be split into two parts:
(X(i)

(j) ,y
(i)
(j)) and (X(−i)

(j) , y(−i)
(j) ). The spectra X(i)

(j) and response variables y(i)
(j)

correspond to the samples associated with the withheld ith cross-
validation fold and the jth sample re-ordering while X(−i)

(j) and y(−i)
(j)

correspond to the spectra and response variables, respectively,
associated with the remaining samples. Note the abuse of nota-
tion for i and j. Previously i and j were used for the ıth principal
component (or Krylov subspace) and jth sample in the data set.
It will be clear from the context whether we mean principal com-
ponent or sample, or cross-validation fold or sample re-ordering.
The number of samples associated with (X(i)

(j) ,y
(i)
(j)) and (X(−i)

(j) ,y(−i)
(j) ) are

mi and ndata − mi , respectively. In keeping with the notation of
previous sections, the calibration data are set to X := X(−i)

(j) and
y := y(−i)

(j) where m = ndata − mi and the validation spectrum z is
one the mi samples from X(i)

(j) . As described in Equation (1), both
X(−i)

(j) and X(i)
(j) are mean-centered using the mean spectrum of the

X(−i)
(j) while y(−i)

(j) is mean-centered with respect to its own mean
response value. The calibration phase then consists of solving
the linear system X(−i)

(j) b
(i)
(j, k) = y(−i)

(j) where b(i)
(j, k) is the n-dimensional

regression vector obtained using the kth regularization parame-
ter (for PCR, using the first k principal components; for STR, using
�k ; and for F-PLS or B-PLS, using the first k dimensions of the
Krylov subspace). Since there are nfold cross-validation folds and
norder sample re-orderings, nfoldnorder separate calibrations will be
required for each MC method. Note that an SVD computation is
performed per calibration.

The prediction phase results in the following mi-dimension
vector of estimations ŷ(i)

(j, k) = X(i)
(j)b

(i)
(j, k) + ȳ (−i)

(j) 1mi
where ȳ (−i)

(j) is the
mean of the vector components in y(−i)

(j) . Collecting these esti-
mated predictions, we can compute the root mean square error
of cross validation (RMSECV) for the jth sample re-ordering and
kth regularization parameter such that

e(j, k) =

√√√√ 1

ndata

nfold∑
i=1

||ŷ(i)
(j, k) − y(i)

(j)||22, j = 1, . . . , norder, k = 1, . . . , q

(23)

where q is the number of regularization parameters. Since nfold

divides evenly into ndata for the corn set, q is equal to the rank of
the calibration data X(−i)

(j) —which is the same across all folds and
sample re-orderings. For the corn data set, q = min(mi − 1, n) =
min(71, n) = 71. For the regression vectors, the root mean square
norm of cross validation (RMSNCV) will also be computed in a
similar manner:
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n(j, k) =

√√√√ 1

nfold

nfold∑
i=1

||b(i)
(j, k)||22, j = 1, . . . , norder, k = 1, . . . , q.

(24)

The median RMSECV and RMSNCV values for the kth regular-
ization parameter, denoted as e(k) and n(k) , respectively, will be
calculated as

e(k) = median{e(1, k), . . . , e(norder , k)},
n(k) = median{n(1, k), . . . , n(norder , k)}, k = 1, . . . , q (25)

For the projection methods (PCR, F-PLS and B-PLS), the number
of regularization parameters q used depends on the rank of the
calibration data. On the other hand, for STR, the number of �

values that one can use is arbitrary. In this case, the number of
� values is set to q = 100 where the maximum � value is set to
the largest singular value of X(−i)

(j) (i.e. �1 = s1) and the remaining �

values are chosen in an exponentially decaying fashion such that
�1 < �2 < · · · < �q. In both the projection and non-projection
cases, the regularization parameter (k or �k ) ranges from the most
to the least amount of filtering/smoothing as k increases from 1
to q.

When calculating the leverages, h(i)
(j, k) represents an mi-

dimensional vector of leverage values associated with the
withheld samples for the kth regularization parameter, ith cross-
validation fold and jth data re-ordering. The vector ı(i)

(j, k) denotes
the spectral F-ratios in an analogous manner. These vectors are
then concatenated to form ndata-dimensional vectors such that

h(j, k) =



h(1)

(j, k)

...

h
(nfold)

(j, k)


 , ı(j, k) =




ı(1)
(j, k)

...

ı
(nfold)

(j, k)


 ,

j = 1, . . . , norder, k = 1, . . . , q (26)

The median leverage and spectral F-ratio values across the sample
re-orderings for each regularization parameter, denoted as h(k)

and ı(k) , respectively, are also ndata-dimensional vectors and are
computed component-wise as h(k) = median{h(1, k), . . . ,h(norder , k)}
and ı(k) = median{ı(1, k), . . . , ı(norder , k)}, k = 1, . . . , q. The median is
used (as opposed to the mean) since some withheld samples for a
specific data re-ordering have large leverage and spectral F-ratio
values that are not consistent with the vast majority of the data
reorderings. For consistency, the median measure was also used
in Equation (25).

5.2.4. Regularization parameter selection

The diagnostic measures h(k) and ı(k) are computed for each regu-
larization parameter (k or �k ). However, one generally commits to
a particular or ‘optimal’ regularization parameter, say, for subse-
quent prediction on a validation data set. There are many criteria
to select regularization parameters [17,43,44]. The simplest one
finds the parameter that corresponds to the index k that mini-
mizes the RMSECV values or

hopt = h(k), ıopt = ı(k), k = arg min
1≤i≤q

e(i) (27)

While this is not necessarily the best selection method, it
represents a consistent method for comparison purposes. Unfor-
tunately, the minimum RMSECV value on the curve (k, e(k)) often
occurs in a flat region. Hence, e(k − k0) ≈ e(k) (for a small positive
integer k0) with e(k − k0) > e(k) . This is not an uncommon scenario
and will result in under-regularization and over-fitting. To avoid
this pitfall, we will choose the first index k such that e(k) is
beneath the threshold a + c(b − a) where a = min{e1, . . . , eq},
b = max{e1, . . . , eq} and c = 0.05. The constant c (0 ≤ c << 1)
ensures that we are on the side of over-regularization as opposed
to under-regularization. If c = 0, then we obtain the index given
by Equation (27). We will refer to this regularization parameter
selection strategy as the ‘min+’ selection method.

5.3. Results

5.3.1. Model selections

Figures 1–3 show results for the corn data set. Figure 1 shows two
ways to display the median RMSECV values. In the top subplot, the
logarithm of the median RMSNCV and RMSECV coordinates, i.e.
(log(n(k)), log(e(k))), k = 1, . . . , q, are plotted for each MC method
and regularization parameter. This subplot illustrates the trade-off
between the size of the regression vector (the amount of regu-
larization) and the size of the prediction error, and is related to
the L-curve which is used for regularization parameter selection
[17,43]. The second way to display the median RMSECV values is
the more commonplace one and is shown in the bottom subplot:
RMSECV versus index k or the coordinates (k, e(k)). For example, in
the case of B-PLS, the coordinate (k, e(k)) would correspond to the
RMSECV associated with PLS factor k or the first k Krylov subspace
dimensions. Qualitatively, all of the MC methods behave similarly
in the top subplot. The plots for F-PLS and B-PLS are identical since
they both compute the same regression coefficients. The regular-
ization parameters corresponding to min+ selection method are
k = 14 for PCR, � = �31 = 0.0031 for STR and k = 8 for both F-
PLS and B-PLS. The coordinates associated with the indices 14,
31 and 8 have been enlarged on the curves in Figure 1. When
RMSECV is not plotted on a log-scale, then the constant c = 0.05
seems reasonable. Note that for this STR-based calibration, the
number of � values was set to 100 such that the largest and
smallest values were the largest singular value (s1) and 0, respec-
tively. The 98 intermediate � values decreased from s1 to 0 in an
exponentially decaying manner. For the remaining MC methods,
the number of principal components or latent factors was set to
q = min(m� − 1, n) = 71. Although the regularization indices are
not comparable to one another (e.g. PLS ‘converges to an opti-
mal’ solution using fewer factors (the first eight Krylov subspace
dimensions) than PCR (the first 14 principal components)), the
solution norms ||b||2 shown in the top subplot of Figure 1 are
comparable and are in very close agreement across the methods.

5.3.2. Leverages and spectral F-ratios at selectedmodels

Figure 2 shows the normalized leverage and spectral F-ratio
outlier values, respectively, that were calculated according to the
regularization parameters corresponding to the min+ selection
method. By ‘normalized’, we mean that the outlier values were
scaled to unit length, i.e. hopt/||hopt|| and ıopt/||ıopt||. In this way,
we can facilitate a commensurable comparison of the outlier
values across MC methods. For leverage, a great deal of consis-
tency is achieved for all of the samples across the MC methods
with samples 46, 47, 54, 55, 68, 72, 75 and 77 having the largest
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Figure 1. The top subplot shows the RMSNCV n(k) vs. the RMSECV e(k) across the four MC methods on a log–log plot while the bottom subplot shows
the RMSECV e(k) versus the index k. The coordinates associated with the regularization parameters chosen by the min+ selection method are enlarged
and black in color.

Figure 2. Sample vs. diagnostic measures across the four MC methods. The top and bottom subplots correspond to leverages (hopt) and spectral F-ratios
(ıopt), respectively.

leverage values. For the spectral F-ratios, the consistency was not
as great as it was for leverage. For example, samples 46, 47, 68
and 75 had large spectral F-ratio values but there was no unan-
imous agreement on these samples being large across all MC
methods.

On average, PCR, STR and F-PLS behave similarly with respect
to the diagnostic merits in Figure 2. As a consequence, a natural
question arises: How similar or dissimilar are the corresponding
filter factors? To answer to this question, a single regression was
performed using PCR, STR and F-PLS on all of the samples in the
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Figure 3. Index (i) vs. filter factors (fi ) using the regularization parameter
obtained that minimizes RMSECV in Figure 1.

data set using the regularization parameters obtained from the
min+ selection method (k = 14 for PCR, � = �31 = 0.0031 and
k = 8 the PLS-based methods). The resulting set of filter factor
is shown in Figure 3. PCR exhibits a binary 0 or 1 filter factor
representation while the filter factors for STR decay monotonically
between 0 and 1. The filter factors for F-PLS exhibit a polynomial-
like oscillation for 5 ≤ k ≤ 10 decay, exceeding 1 in value, and
then decaying in a manner similar to STR for k > 10. This type of
behavior for F-PLS is typical [19,43]. As measured by the effective
numerical rank (or the sum of the filter factors), PLS is the most
parsimonious in terms of model complexity.

5.3.3. Computational advantages

If one is interested in regression only and not diagnostic
measures, then Krylov subspace methods such as PLS are the
preferred choice for large data sets since one does not have to
explicitly form the subspace matrices Ũk+1, R̃k and Ṽk . This is not
the case for the other MC methods since the SVD of the calibration
data is required. (Note that other approaches exist for PCA that
do not require the SVD such as NIPALS [45,46].) For large data sets,
the SVD is computationally prohibitive. However, if one desires
leverages and spectral F-ratios for a particular calibration model,
then the subspace matrices are required. For a timing comparison,
the tic and toc functions in MATLAB will be used to compute
elapsed time. In particular, the timing will be based upon the
median elapsed time for calibration (i.e. forming a regression
vector and the subspace matrices) and the median elapsed time
for leverage and spectral F-ratio calculations for a single calibra-
tion session on a cross-validation fold. For example, the median
elapsed time for calibration is computed from the elapsed times
across the nordernfold = (100)(10) = 1000 calibrations performed.

We will compare two MC methods—STR (100 regularization
parameters) and B-PLS (80 factors)—on the corn data set. For
STR, the median calibration time was 0.0100 s (0.0087 s of which
was calculating the SVD) while the median time for calculat-
ing leverages and spectral F-ratios was 0.0190 s. For B-PLS, the
median calibration time was 0.0258 s while it took a median
time of 0.1421 s to calculate the leverages and spectral F-ratios.
The calibration time for PLS was considerably slowed down due to
the re-orthonormalization requirement we imposed on the sub-
space matrices Ũk+1 and Ṽk . Note that we would expect B-PLS to
outperform (time-wise) SVD-based MC methods for substantially

larger data sets. Calculating leverages and spectral F-ratios via
the filter factor approach results in a speed-up factor of approx-
imately 0.1421/0.0190 ≈ 7.5. This speed-up is achieved in two
ways. First, there is no inversion required of a bidiagonal matrix
for STR. Second, the calculation of the mean spectral residual for
the calibration spectra is a simple sum involving only singular
value and filter factors—see Equation (22). Although the unit of
time considered is a single calibration session on a cross-
validation fold, the cumulative efficiency of the filter factor
approach across many rounds of cross validation can be con-
siderable.

6. CONCLUSION AND FUTUREWORK

We propose a new algorithm that allows one to compute the MC
diagnostic measures, leverages and spectral F-ratios, using a filter
factor representation. This framework extends these diagnostic
measures from projection-based based methods (PCR and PLS) to
any regression method that admits a filter factor representation—
projection-based or not. In addition to being extensible, the
filter factor representation is also computationally thrifty. The MC
methods outlined here are simple regularization schemes based
upon the SVD. However, SVD does not scale well to large data
sets. Recently discussed randomized versions of SVD are consid-
erably more efficient and reliable than the classical/deterministic
SVD version and are also amenable to parallelization [47,48].
Being probabilistic, these schemes have a finite probability of
failure but, in most cases, this probability is negligible (e.g. 10−17).
Other future work would abandon the SVD altogether in favor of
‘non-standard’ factorizations that may be more appropriate when
scaling up to massive data sets, incorporating spectroscopic a pri-
ori information, updating/downdating rows (samples) or columns
(wavelengths) or performing wavelength selection.
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APPENDIX A: DERIVATIONOF THE FILTER
FACTORS FOR PCR

For PCR, the subspace S in Equation (4) consists of the
space spanned by the first k right singular vectors of X, i.e.
{v1, v2, . . . , vk}. The vectors ci = Xvi are called the principal com-
ponents (PCs) of X. The direction c1 = Xv1 contains the largest
sample variance amongst all normalized linear combinations of
X and all subsequent PCs have maximum variance subject to
being orthogonal to previous PCs [49]. If Xk = ∑k

i=1 siuivT
i , then

PCR amounts to the CLS minimization of ||Xkb− y||22 with the
solution being identical to Equation (2) except that the last r − k

terms have been truncated:

bPCR = X†
ky =

k∑
i=1

˛ivi = VF˛, (28)

F = diag(1k, 0), fi =
{

1, i = 1, . . . , k

0, i = k + 1, . . . , r
(29)

PCR is an appropriate regularization strategy if one can reliably
estimate the numerical rank k of the data such that there is a
well-defined gap between sk and sk+1.

APPENDIX B: DERIVATIONOF THE FILTER
FACTORS FOR STR

If there is no well-determined gap in the singular value spectrum,
truncation of the SVD expansion may not lead to the best-
regularized solution. If we truncate too early then we may lose
information, and if we include too many terms then the solution
can become unstable in the presence of noise. A softer threshold
approach based upon a set of filter factors that are not binary (0
or 1) may be required such that terms with small singular values
are damped to a greater degree than terms with larger singular
values. TR allows for such flexibility. In the STR version of TR, the
solution of Equation (5) is obtained by setting the gradient of �(b)
equal to zero and solving for b using the relation X = USVT:

bSTR = (XTX + �2Ir )
−1XTy = V(S2 + �2Ir )

−1SUTy = VF˛ (30)

F = (S2 + �2Ir )
−1S2, fi = s2

i

s2
i + �2

, i = 1, . . . , r (31)
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Note that for any � ≥ 0 the filter factors are bounded between
0 and 1. When � = 0, the STR solution reverts back to the CLS
solution since F = Ir .

APPENDIX C: DERIVATIONOF THE FILTER
FACTORS FOR PLS

The construction of the filter factors for PLS is more complicated.
PLS is a Krylov subspace algorithm, i.e. the solution to Equation
(4) is restricted to lie in the Krylov subspace S = Kk (G,d) of
dimension k and is defined as

Kk (G,d) = span{d,Gd, . . . ,Gk−1d}

withG being a positive (semi)definite matrix [18]. Here, the matrix
G and the vector d are associated with the CLS-based normal
equations GbCLS = d such that G = XTX and d = XTy. The most
well-known Krylov subspace algorithm is the conjugate gradient
(CG) algorithm and it has come into widespread use for solving
large-scale systems of linear equations [36,50]. In the numerical
analysis, statistics and chemometrics literature, there are many
ways to implement both PLS and CG. However, the commonality
that these two algorithms share is that they are exactly the same
numerical procedure when implemented via the Lanczos bidiag-
onalization algorithm [16–18,20,33]. We will take this approach
and will use bPLS to refer to the CG solution obtained via the LBP.
We now briefly examine how the filter factors associated with PLS
are constructed. The original filter factor derivation for CG (and by
extension PLS) first appeared in Reference [51].

Since the CG solution vector bPLS lies in the Krylov subspace
Kk (G,d), it can be rewritten as the following linear combination:

bPLS =
k−1∑
i=0

�iG
id =

k−1∑
i=0

�iG
i(GbCLS) =

k−1∑
i=0

�iG
i+1bCLS

for some coefficients �i . As a result, the error between the CLS
solution and the CG solution vector can be expressed as a matrix
polynomial

bCLS − bPLS = bCLS −
k−1∑
i=1

�iG
i+1bCLS = p(G)bCLS,

p(�) = 1 −
k−1∑
i=1

�i�
i+1 (32)

where the polynomial p(�) has degree k and satisfies p(0) = 1. The
filter factors associated with PLS ultimately derive their damp-

ing behavior from the oscillatory nature of a particular type of
polynomial used in Equation (32).

Minimizing ||Xb− y||22 over any subset S in Rn is the same as
minimizing ||bCLS − b||2G over S (where ||x||2G = xTGx is known as
the induced norm) since

min
b∈S

||Xb− y||22 = min
b∈S

bTGb− 2dTb+ yTy

= min
b∈S

bTGb− 2dTb+ bT
CLSGbCLS

= min
b∈S

||b− bCLS||2G (33)

If S = Kk (G,d) and if we substitute Equation (32) into the right-
hand side of Equation (33), then bPLS can be expressed as the
solution of the following polynomial approximation problem:

min
b∈S

||Xb− y||22 = min
p∈Pk ,p(0)=1

||p(G)bCLS||G (34)

where Pk denotes the set of polynomials of degree k and p(0) = 1.
The polynomial which minimizes Equation (34) is known as the
Ritz polynomial

Rk (�) =
(

�k
1 − �

�k
1

)
· · ·

(
�k

k − �

�k
k

)
=

k∏
i=1

(
�k

i − �

�k
i

)

where the Ritz values �k
i are the corresponding polynomial zeros

[21,36,51]. The orthonormality ofV allows us to rewrite any power
ofG asGi = V(S2)iVT. By extension, any matrix polynomial involv-
ing G could be expressed as p(G) = Vp(S2)VT. If we solve for
bPLS in Equation (32) using the relation bCLS = V˛ in Equation (3)
and Rk (G) = VRk (S

2)VT, then we finally arrive at the filter-factor-
based solution for CG iteration number k (or more commonly
known as the kth PLS factor):

bPLS = bCLS − Rk (G)bCLS = (
In − VRk (S

2)VT
)
bCLS

= V
(
Ir − Rk (S

2)
)
˛ = VF˛ (35)

F = Ir − Rk (S
2), f k

i = 1 − Rk (s
2
i ) = 1 −

k∏
i=1

(
�k

i − s2
i

�k
i

)

(36)

Unlike their PCR and STR counterparts, the PLS-based filter factors
depend not only on X but also on the response variable y since
b ∈ Kk (G,d) = Kk (X

TX,XTy). Moreover, the filter factors can take
on values outside the interval [0, 1] since f k

i is the value of a kth
degree polynomial evaluated at � = s2

i .
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