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Abstract

Uniform Manifold Approximation and Projection (UMAP) and related manifold embedding tech-
niques generate nonlinear projections of high-dimensional data onto low-dimensional subspaces. However,
due to the non-linearity of these methods, there is no analogous transformation matrix (i.e., the loadings
or eigenvectors) that allows one to see the corresponding relationship between each sample location and
each feature (e.g., wavelength). We propose a mechanism that embeds the pairwise distance structure of
UMAP-type embeddings into the machinery of Principal Component Analysis such that one can recover
an approximate set of loading vectors associated with the intrinsic topology of high-dimensional data.

Keywords— Principal Component Analysis, UMAP, Embedding

1 Introduction
Most examples of high-dimensional data sets such as those in spectroscopy are truly not high-dimensional. Each
data point or spectrum typically lies on a low-dimensional manifold embedded in a high-dimensional space spanned
by all available variables or features (e.g., wavelengths). Linear projection techniques, such as Principal Component
Analysis (PCA), try to approximate a subspace in which this manifold is embedded by taking linear combinations
of all of the variables. While classical PCA is good at capturing global trends in data by finding a low-dimensional
projection that maximizes variance, it largely neglects relevant aspects that are highly localized in structure. For
example, in many imaging data sets such as those generated by functional Magnetic Resonance Imaging where one
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measures neuronal activity at a particular location in the brain, PCA performs poorly in terms of recovering true
low-rank signals [1].

Recent nonlinear methods such as t-SNE and UMAP create low-dimensional projections that attempt to preserve
the underlying topological structure of the manifold [2, 3]. In most cases, the preservation of the underlying structure
is intrinsically-motivated: data points that are close in the high-dimensional space should also be close in the low-
dimensional projection. In some cases, the manifold structure can also be extrinsically-motivated, e.g., one can impose
that two samples be deemed close together or far away on the basis of expert domain knowledge. In the analysis
of human microbiome data, for example, external information from various bioinformatic pipelines are routinely
used to quantify information about samples and features, e.g., phylogenetic dissimilarity across a pair of samples
[4]. Nonlinear projection methods such as UMAP provide valuable and complementary insight on how samples are
co-localized. However, such embeddings provide little guidance on how a particular feature (wavelength) impacts the
co-localization of samples in the low-dimensional projection. When applying UMAP to a spectroscopic data set, is the
impact of i-th wavelength negligible on the projection, or is it significant? In this paper, we embed a sample-to-sample
dissimilarity matrix into PCA such that we aim to preserve the embedded nearest-neighbor structure provided by
the UMAP projection. Moreover, we obtain an unsupervised model (a linear transformation matrix) by which we 1)
obtain useful wavelength discriminating information and 2) make projections on new samples.

Generalizations of PCA have a long history in chemometrics [5–8]. The primary thrust of these PCA variants is
to either deferentially weight samples or variables such that general noise structures (e.g., heteroscedasticity) can be
accommodated, or to up-weight more recently acquired samples and down-weight older samples. In this paper, we
do not concern ourselves with these issues. As already mentioned, our aim is to instead incorporate a priori nearest-
neighbor structure via pairwise dissimilarities between samples. However, this aspect has not garnered much attention
within chemometrics as it has outside of chemometrics. Of particular interest are the Locality Preserving Projections
or LPPs [9–11]. LPPs linearly project high-dimensional data onto low-dimensional subspaces such that the Euclidean
distances between data points within local neighborhoods are better preserved compared to methods that focus on
global variance maximization such as PCA. Other approaches extend LPPs for classification purposes in supervised
or semi-supervised scenarios [12–14]. In contrast, we investigate the behavior of linear dimension reduction where
the nearest-neighbor topology has been externally-supplied to us by a nonlinear manifold embedding (e.g. UMAP).
In this sense, this paper shares common topology-preserving mechanisms that have been explored in chemometrics,
in particular domain adaptation and calibration transfer [15–18].

Section 2 examines various classical PCA formulations. In chemometrics, the most common way of explaining
PCA does not easily admit generalizations that allow the embedding of a priori information (e.g. sample-to-sample
dissimilarity). Instead, we utilize a less well-known notion of PCA that does admit such generalizations: find the
projection that maximizes the sum of all squared pairwise distances between the projected samples in the low-
dimensional subspace. Section 3 describes the nonlinear projection technique known as UMAP. We show that it
provides useful insights with respect to sample clustering that would be difficult to obtain from PCA alone. Section
4 describes two extensions of PCA known as Dual-Constrained PCA (DC-PCA) and Primal-Constrained PCA (PC-
PCA). Mathematically, both DC-PCA and PC-PCA can be expressed as a generalized eigenvalue problem. Section
5 examines additional projections and the resulting eigenvectors from DC-PCA and PC-PCA. Finally, Section 6
concludes the paper and proposes future research.

Notation. In this paper, matrices and vectors are denoted by boldfaced uppercase (e.g., X) and lowercase (e.g., x)
letters, respectively. The superscripts T, + and −1 indicate the transpose, pseudoinverse and inverse of a matrix or
vector. Unless otherwise noted, all vectors are assumed to be column vectors. The columns of a matrix are denoted
by parenthetical subscripts, e.g., x(j) is the jth column of X, while xT

i = [xi1, xi2, . . . , xin] indicates the ith sample
or row of X. The matrix of spectra X = [x1, x2, . . . , xm]T = [x(1), x(2), . . . , x(n)] of size m× n consists of m samples
(rows) and n variables (columns, e.g., wavelengths). We assume that the data has already been mean-centered such
that

X← JX, J = Im −
1
m

1m1T
m. (1)

The first k columns of a matrix M will be denoted as Mk.
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2 PCA Formulations
PCA projects high-dimensional data (e.g., spectra) onto a low-dimensional subspace of uncorrelated variables (scores)
called principal components (PCs). The first PC accounts for as much of the variance in the data as possible, and
each succeeding PC accounts for as much of the remaining variance as possible. By using only the first few PCs,
PCA makes it possible to effectively reduce the number of meaningful dimensions of the spectra, while simultaneously
maximizing as much variance as possible. Traditionally, the projection is accomplished by a mapping via a n×k linear
transformation matrix containing k orthonormal direction vectors Vk = [v(1), v(2), . . . , v(k)] whereby the number of
PCs we seek is small in number: k ≪ min(m − 1, n). The PCs or matrix of score vectors Tk are then obtained by
the application of Vk which in turn shatters each spectrum xi into perpendicular pieces xT

i v(j):

Tk = [t1, . . . , tm]T = [t(1), . . . , t(k)] = XVk. (2)

Here, each projected sample ti in (2) can be expressed row-wise as tT
i = [ti1, . . . , tik] = xT

i Vk. Similarly, each score
vector in (2) is a column vector of X such that t(j) = Xv(j). Knowing the value of each loading vector component vij

of v(j) = [v1j , v2j , . . . , vnj ]T is desirable since each feature component corresponds to a variable such as a wavelength.
Since each column of Tk can be expressed as a linear combination of the columns of X, a loading vector component
vij with small magnitude indicates that the ith wavelength of X has a negligible impact on the construction of the
jth PC.

Australian Rainforest Leaf Litter Data Set: In this paper, to enable the comparison of different projection
methods as they are introduced, we will use the Australian Rainforest Leaf Litter (ARLL) data set to illustrate
how samples are projected[19]. In brief, the ARLL data set consists of 702 NIR samples of leaf-litter collected at
various stages of decomposition across various rainforest sites in Queensland, Australia. The spectra are displayed
in absorbance units. Each spectrum consists of 1153 wavelengths ranging from 800nm to 2773nm with non-equal
spacing between wavelength intervals. In addition to different collection sites, there were two different collection
treatments: one used leaves collected in litter traps and exposed at their respective sites (in situ), and the other
used leaf litter from the deciduous tree Archidendron vaillantii (control). Moreover, the sample collection times were
allowed to vary, i.e., the amount of time leaves were left exposed on the soil surface. These times varied from 0 days
to well over a year.

Figure 1 shows the absorbance spectra. The top subplot displays the absorbance waveforms as a function of
wavelength—one curve for each spectrum. The bottom subplot displays the same absorbance values as a heatmap.
To better see differences in absorbance across samples (rows) and wavelengths (columns), the dynamic range of
absorbance has been truncated in the heatmap—only absorbance values below 0.004 are shown. (All absorbance
values above 0.004 are color-coded as pink.) The samples in the heatmap are grouped into 11 unique sample pairs
(i, j) of sample treatments (i ∈ {1, 2}) and collection times (j ∈ {1, 2, 3, 4, 5, 6}), i.e.,

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2.6}.

(There are no samples associated with i = 2 and j = 1.) With respect to samples, there are are pronounced differences
between sample treatments i = 1 and i = 2.

Both the top and bottom subplots show two main absorption bands due to water: one band located around
1900nm, and another—and the largest—at 2720nm due to atmospheric absorption. As a consequence, we will
examine two versions of the ARLL data set: one using all wavelengths (denoted as full), and another that truncates
all wavelengths greater than 2500nm (denoted as truncated). Without this truncation, subsequent projections will be
unduly influenced by the atmospheric absorption of water. This can be seen in Table 1 where the explained variances
are given for the two-dimensional (2D) and three-dimensional (3D) PCA projections across the full and truncated
ARLL versions. By including the dominant waterband, the explained variances are higher relative to the explained
variances associated with the truncated ARLL data set. In short, we want to assess how projections are affected by
the inclusion or exclusion of the dominant waterband.

Figure 2 displays various PCA projections. Column 1 displays three-dimensional projections, while columns 2, 3
and 4 display two-dimensional projections associated with PCs 1 and 2, PCs 1 and 3 and PCs 2 and 3, respectively.
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Figure 1: Spectra associated with the ARLL data set. The top subplot displays the spectra—one curve for
each spectrum. The bottom subplot displays absorbance as a heatmap (only absorbance values below 0.004
are shown; all values above 0.004 are color-coded as pink). The samples in the heatmap are grouped into
11 unique sample pairs (i, j) of sample treatments (i ∈ {1, 2}) and collection times (j ∈ {1, 2, 3, 4, 5, 6}).

EXPLAINED VARIANCE
2D 3D

FULL 83.9% 89.5%
TRUNCATED 58.6% 80.3%

Table 1: The two- and three-dimensional explained variance associated with PCA.
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Figure 2: PCA applied to the full and truncated ARLL data sets. Column 1 displays three-dimensional
PCA projections. Columns 2, 3 and 4 display two-dimensional PCA projections across PCs 1 and 2, PCs
1 and 3 and PCs 2 and 3, respectively. The first two rows and the last two rows correspond to samples
that are color-coded according to the six collection times and two treatments, respectively. Rows 1 and 3
correspond to the full ARLL data set while the rows 2 and 4 correspond to the truncated ARLL data set.
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The first two rows and the last two rows correspond to samples color-coded according to the six collection times
and two treatments, respectively. (Rows 1 and 3 are associated with the full ARLL data set while the rows 2
and 4 are associated with the truncated ARLL data set.) For the PCA projections associated with the full ARLL
data set, three dimensions are required to show appreciable sample separation across both sample collection times
and sample treatments. (There is separation but no clear separation between samples of different types.) For the
PCA projections associated with the truncated ARLL data set, two latent dimensions suffice for a distinct sample
separation according to sample collection time (PCs 1&2 and PCs 2&3). However, a third latent dimension associated
with PC 3 is required to show separation with respect to sample treatment. In short, all three PCs are required
to show discernible separation in samples across both collection time and treatment. It is important to note that
it is difficult to detect clusters in spectroscopic data with PCA (or any other unsupervised data analysis technique)
without knowing in advance the colors associated with sample membership.

2.1 Singular Value Decomposition (SVD)

Perhaps the most common way to extract the direction vectors, or loadings, in PCA is to apply the Singular Value
Decomposition (SVD) to the m× n matrix of mean-centered spectra X

X = UΣVT =
r∑

i=1

σiu(i)vT
(i),


U = [u(1), . . . , u(r)]
Σ = diag(σ1, . . . , σr)
V = [v(1), . . . , v(r)].

(3)

Here r indicates the rank of X such that 1 ≤ r ≤ min(m − 1, n). We use only the first k (k ≪ r) right singular
vectors such that Tk = UkΣk = XVk.

2.2 Eigenvectors of the Covariance Matrix

The variance of a projection onto a direction of unit length can be expressed as the following function[20]:

f(v) = vT
( 1

m
XTX

)
v (4)

As a result, finding the direction of maximal variance is also the direction that satisfies

max
v

f(v) subject to vTv = ||v||2 = 1. (5)

Using the standard calculus-based approach of Lagrangian multipliers, maximizing (5) is equivalent to finding the
eigenvector associated with the largest eigenvalue of the following eigenvalue problem:

Cv = λv, C = XTX. (6)

Note that re-scaling a matrix does not alter the eigenvectors of C but simply re-scales the corresponding eigenvalues.
Moreover, the eigendecomposition of a symmetric positive semi-definite matrix (characterized by having all eigenvalues
being non-negative, among all other properties), such as C, yields an orthogonal basis of eigenvectors.

By extension, PCA finds multiple direction vectors {v(1), . . . , v(k)} contained in Vk that maximize the sum of
variance terms:

max
v(1),...,v(k)

k∑
j=1

vT
(j)Cv(j) subject to vT

(i)v(j) = δij , i, j = 1, . . . , k. (7)

The “delta” function δij in (7) is 1 if i = j and 0 otherwise, and this indicates that the direction vectors v(j) are
orthonormal whereby VT

k Vk = I. This maximization problem can also be recast as the eigenvalue problem Cv = λv
where we instead find the eigenvectors associated with the k largest eigenvalues. The score vectors are then obtained
by the transformation Tk = XVk.
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2.3 Maximizing Pairwise Distances

This PCA formulation is the least used but it is the one that we are the most interested in: find a k-dimensional
transformation matrix that maximizes the sum of all squared pairwise distances between projected samples[21]. As
before, the projected vectors are denoted as Tk where tT

i = xT
i Vk. Under this framework, we find the transformation

matrix Vk that maximizes
m∑

i,j=1

||ti − tj||22 =
m∑

i,j=1

∣∣∣∣VT
k (xi − xj)

∣∣∣∣2
2

. (8)

Note that (8) is an unweighted sum of squared pairwise distances. Hence, this formulation naturally lends itself to
many weighted sum generalizations that we will explore in Section 4.

3 Uniform Manifold Approximation and Projection
Uniform Manifold Approximation and Projection, or UMAP, corresponds to a nonlinear projection that has gained
traction in the last few years with respect to visualizing data[3]. In brief, the matrix X gets nonlinearly mapped to
a low-dimensional subspace denoted by A:

A = [a1, ..., am]T = [a(1), ..., a(k)]. (9)

Although we will not discuss the inner workings of the nonlinear projection machinery, an excellent discussion or
“walk through” demonstration of how UMAP works can be found in [22]. In (9), each row of A (denoted by aT

i )
indicates the ith projected sample, and each column of A (denoted by a(j)) is analogous to a “nonlinear” PC or score
vector. Instead of maximizing variance, UMAP instead preserves topology, i.e., maximizing local nearest-neighbor
sample associations along a manifold. Unfortunately, and as a consequence of the nonlinear optimization associated
with the low-dimensional mapping, there is no linear transformation matrix that relates the impact or contribution
of the ith wavelength of X to the jth nonlinearly mapped dimension or a(j).

UMAP, like other nonlinear projection methods such as t-SNE [2], is a stochastic algorithm. Without fixing a
random seed, UMAP will naturally differ between runs. Randomness is also exploited to speed up the underlying
UMAP algorithm itself. Fortunately, UMAP has been shown to be relatively stable such that the the variance between
runs are relatively small on average[3, 22]. All of the UMAP-derived results examined in this paper are based upon
the same UMAP projection.

Figure 3 displays the two-dimensional UMAP projections for the ARLL data set. Columns 1 and 2 correspond
to the full and truncated data sets, while rows 1 and 2 correspond to samples color-coded according to collection and
treatment. For the UMAP projections, we observe clear sample separations with respect to collection time (early
times {1, 2, 3} versus later times {4, 5, 6} across both the full and truncated data sets). For treatment, we also observe
sample separation for both the full and truncated data sets but it is not as pronounced as the difference between early
and later collection times. UMAP reveals, in two latent dimensions, clear sample distinctions across collection times
and treatments. In contrast, PCA required at least three latent dimensions to reveal these separations, and even in
three dimensions, the sample separations were fuzzy and overlapping. In short, UMAP compresses the ARLL data
more efficiently with respect to capturing low-rank signals associated with physically relevant phenomena. However,
UMAP provides no transformation matrix that could shed insight as to which wavelengths are most responsible for
the two-dimensional separation of these samples.
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Figure 3: Two-dimensional UMAP projections associated with the full and truncated ARLL data
sets. Columns 1 and 2 display the projections associated with the full and truncated ARLL data sets,
respectively. Rows 1 and 2 correspond to samples that are color-coded according to collection time and
treatment, respectively. For UMAP, the axes labels LD1 and LD2 indicate the first two latent dimensions.

4 Dissimilarity-Embedded PCA
We now want to extend the formulation of PCA in (8) such that the weighted sum will not be uniform. If D is a
symmetric m×m matrix with non-negative weight entries dij , then the maximization of (8) can be re-written as

m∑
i=1

m∑
j=1

dij ||ti − tj ||22 , D =


d11 d12 · · · d1m

d21 d22 · · · d2m

...
...

. . .
...

dm1 dm2 . . . dmm

 (10)

When dij is large, the term dij ||ti − tj ||22 will increase the overall weighted sum, and the distance between the
projected samples ti and tj is not preserved, i.e., the projected samples are pushed further apart. When dij is small
and near zero, the weighted sum will decrease, and this forces ti ≈ tj , i.e., the projected samples are forced to be
close together. As a result, the weight dij encodes dissimilarity prior knowledge, which is manifested by how the
projected samples ti and tj are pushed or pulled apart by the value of dij .
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4.1 Dual- and Primal-Constrained PCA

Suppose each projected vector ti is a transformation of each spectrum xi by a single eigenvector denoted by v, i.e.,
ti = xT

i v such that t = [t1, . . . , tm]T = Xv. In this unidimensional case, the projected sample ti is in fact a scalar
(i.e., ti) and the norm ||ti − tj ||22 simplifies to (ti− tj)2. As a result, the weighted sum in (10) for the unidimensional
case can be re-written (after some algebra) as follows:

m∑
i=1

m∑
j=1

dij(ti − tj)2 = 2tTHt− 2tTDt

(
H = diag(h1, . . . , hm), hi =

m∑
k=1

dik

)
= 2tTLt = 2vTCLv

(
L = H−D, CL = XTLX

) (11)

The matrix L = H−D is commonly referred to as a Laplacian matrix. All Laplacian matrices are characterized by 1)
having zero sum for all its of rows and columns, 2) being positive-semidefinite, and 3) having non-negative diagonal
entries and non-positive off-diagonal entries. The matrix CL = XTLX can be interpreted as a Laplacian-weighted
covariance matrix.

We now consider an expansion of (11) to multiple terms involving the k score vectors t(i) (or the k eigenvectors
v(i)):

f(t(1), . . . , t(k); L) =
k∑

i=1

tT
i Lti =

k∑
i=1

vT
(i)CLv(i) = g(v(1), . . . , v(k); L). (12)

To make the function notation in (12) more compact, we will re-write the arguments of f and g as follows:
f(t(1), . . . , t(k); L) = f(Tk; L) and g(v(1), . . . , v(k); L) = g(Vk; L). Borrowing from terminology common in opti-
mization, the functions f and g can be interpreted as objective functions of dual vectors (the score vectors in Tk)
and primal vectors (the eigenvectors in Vk), respectively. Furthermore, f and g can accommodate, in principle, other
m×m symmetric matrices S as well:

f(Tk; S) =
k∑

i=1

tT
i Sti =

k∑
i=1

vT
(i)CSv(i) = g(Vk; S) (13)

where CS = XTSX.
When maximizing the objective functions f(Tk; S) and g(Vk; S), we also desire that the direction vectors associ-

ated with the new coordinate axes in the low-dimensional subspace have unit length and are orthogonal. As a result,
we now separately maximize f and g subject to orthonormality constraints on the respective dual and primal vectors:

max
t(1),...,t(k)

f(Tk; S) subject to tT
(i)t(j) = vT

(i)(XTX)v(j) = vT
(i)Cv(j) = δij , (14)

max
v(1),...,v(k)

g(Vk; S) subject to vT
(i)v(j) = δij (15)

where C = XTX is the same covariance matrix used in (6). Recall that the delta function introduced in (7), and
used again in (14) and (15), indicates orthonormality. What makes (14) and (15) numerically appealing is that they
are equivalent to solving the following eigenvalue problems [21]:

(14) ⇒ CSv = λCv (16)

(15) ⇒ CSv = λv. (17)

If CS is symmetric and positive (or negative) semi-definite, i.e., all eigenvalues are real and are non-negative (or
non-positive), then we seek the eigenvectors associated with the k largest eigenvalues in magnitude. Note that the
eigenvectors obtained from (16) are the result of a generalized eigenvalue problem of the matrix pair (CS, C). When
S is the identity matrix, then (17) reduces to the ordinary PCA. The projections associated with (16) and (17) will
be referred to as Dual-Constrained PCA and Primal-Constrained PCA, respectively, and will be referred to by the
acronyms DC-PCA and PC-PCA.

The orthogonality condition tT
(i)t(j) = vT

(i)Cv(j) = δij in (14) is a generalization of the standard Euclidean notion
of orthogonality: two vectors v and w are defined to be orthogonal with respect to the symmetric matrix B if
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vTBw = wTBv = 0. When B = I, we say that v and w are orthogonal with respect to the Euclidean distance
metric; otherwise v and w are orthogonal via a non-Euclidean distance metric defined by B. For our purposes, we
will stick with the standard notion of orthogonality in Euclidean distances. In the context of DC-PCA, we want to
emphasize that it is the score vectors t(i) that are orthogonal and not the eigenvectors v(i).

We now apply the DC-PCA projection to the ARLL data set. The intent is to construct a Laplacian matrix
that preserves the cluster structure associated with the UMAP projection (see Figure 3). First, we define the m×m

dissimilarity matrix D in (10) to contain the squared pairwise Euclidean distances between the UMAP-projected
samples in (9), i.e., each matrix entry dij is the squared Euclidean distance between the UMAP-projected samples
ai and aj. Second, we compute the Laplacian matrix using (11):

L = H−D, H = diag(h1, . . . , hm), hi =
m∑

j=1

dij , dij = ||ai − aj||22 . (18)

The first column of Figure 4 shows the two-dimensional DC-PCA projections using this Laplacian matrix L. In
the top subplot (row 1) of column 1, we observe a temporal ordering of the samples, but unlike the UMAP projection
in Figure 3, these projections do not show a clear separation between temporally-ordered samples, or separation
according to treatment (row 3 of column 1). However, in rows 2 and 4 of column 1 (associated with the truncated
ARLL data set), we do observe separation with respect to collection time and treatment (although the separation in
treatment is not as pronounced as the UMAP projections). Like the SVD, the eigenvalue problem (or generalized
eigenvalue problem in general) yields direction vectors that are non-unique with respect to reflection in the x- or
y-axes, i.e., the resulting eigenvector can point in either the positive or negative eigenaxis direction. For the full
ARLL data set color-coded according to treatment, the DC-PCA projection shows a clear x-axis reflection compared
to the corresponding UMAP projection in Figure 3. In Table 2, the first column shows the explained variances for
DC-PCA via the Laplacian embedding matrix for two PCs: 0.27% and 0.29% across the full and truncated ARLL
data sets, respectively (compared to PCA with 83.9% and 58.6% across the full and truncated data sets).

Next, we will explore DC-PCA when the embedding matrix S is set to the matrix of squared Euclidean distances
D in (18). In Section 4.3, we will observe that PC-PCA is in fact a special case of a more general PCA introduced by
[23] and later developed by [24]. Furthermore, in Section 4.3, we will discuss the discrepancy between the explained
variances of PCA and the explained variances of DC-PCA and PC-PCA in Section 4.4.

4.2 Euclidean Distances as the Dissimilarity Matrix

Perhaps a more natural choice for the embedded dissimilarity matrix S would be to only use the Euclidean distance
matrix D instead of the Laplacian matrix L = H −D used in (18). If so, we would instead solve the generalized
eigenvalue problem for the matrix pair (CD, C) where

CDv = λCv, CD = XTDX. (19)

However, a Euclidean distance matrix has different properties than that of a Laplacian matrix, and is characterized
by the following: 1) symmetric with trace (or sum of eigenvalues) equal to zero, and 2) has rank m with exactly one
positive eigenvalue while the remaining m− 1 eigenvalues are negative[25, 26]. But for purposes of solving (19), the
more meaningful question is the following: instead of the matrix properties of D, what are the matrix properties of
the weighted covariance matrix CD?

Any matrix of squared Euclidean distances can be re-written in terms of the original data matrix and its sample
norms[27]. Recall that in our case, the Euclidean distance matrix D is based upon the UMAP-projected samples in
A:

q = [ ||a1||22 , . . . , ||am||22 ]T, D = q1T
m + 1mqT − 2AAT. (20)

Note that the ones vector 1m is in the null space of the mean-centered spectra such that XT1m = 0m. When we
substitute the three-term expansion of D in (20) into the weighted covariance matrix CD = XTDX, the weighted
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Figure 4: DC-PCA via Laplacian and Euclidean matrices, and PC-PCA applied to the ARLL data
sets. Columns 1, 2 and 3 correspond to DC-PCA via the Laplacian embedding matrix, DC-PCA via the
Euclidean distance matrix and PC-PCA, respectively. The top two rows and the last two rows correspond
to the samples color-coded according to collection time and treatment, respectively. Rows 1 and 3 are
associated with the full ARLL data set while rows 2 and 4 are associated with the truncated data set.
The explained variances are shown in Table 2. The x- and y-axes in each subplot correspond to PC 1 and
PC 2, respectively.

11



covariance matrix is found to be negative semi-definite (using the property that vCDv ≤ 0 for all vectors v):

vTCDv = vTXTDXv
= vTXT (q1T

m + 1mqT − 2AAT)Xv
= vT [ (XTq)(1T

mX) + (XT1m)(qTX)− 2(XTA)(ATX)
]

v
= −2vT(XTA)(ATX)v
= −2

∣∣∣∣(ATX)v
∣∣∣∣2

2
≤ 0

(21)

Since CD is negative semi-definite, all of its eigenvalues are non-positive, and as a result, we seek the eigenvectors in
(19) associated with the largest k eigenvalues in magnitude or absolute value. As with the DC-PCA approach via
the Laplacian matrix, the resulting eigenvectors (the primal vectors) obtained here are also not orthogonal.

We should note that it is not strictly necessary to work with the Euclidean matrix D as an embedding dissimilarity
matrix. In some applications, it is preferable to work with a similarity matrix instead. With this in mind, and if we
assume that the projected samples A of UMAP have been mean-centered, then we can convert D = q1T

m + 1mqT −
2AAT in (20) to a kernel similarity matrix K via the following double centering technique [25, 27]:

K = −1
2JDJ = −1

2J(q1T
m + 1mqT − 2AAT)J = AAT (22)

where J is the mean-centering matrix used in (1). To see this, first note that, for any matrix M, JMJ centers the rows
and columns to have mean 0. Consequently, J(q1T)J = J(1qT)J = 0 since the rows of q1T and columns of 1qT are
constant. If we replace D with K = AAT as the embedding matrix in (19), then CK = XTKX is symmetric positive
semi-definite. The resulting generalized eigenvalues of the matrix pair (CK, C) will be different from the generalized
eigenvalues of (CD, C) but the eigenvectors will be the same (except for a ±1 multiplicative factor associated with
the non-uniqueness of eigenaxis directions).

The second column of Figure 4 illustrates the two-dimensional DC-PCA projections via the Euclidean matrix
approach. In contrast to DC-PCA via the Laplacian matrix, DC-PCA via the Euclidean matrix strongly preserves
the UMAP-based topology of the ARLL data set. Moreover, there is an increased separation of samples due to
treatment compared with PCA in three dimensions and UMAP in two dimensions (see Figures 2 and 3). As with
UMAP, the effect of including the large absorption band for the full ARLL data set clearly inhibits the ability of
DC-PCA to fully separate the samples. Now that we appear to have an approach that preserves the UMAP pairwise
distance structure, we will later examine the behavior of the corresponding eigenvectors in Section 5. Although
DC-PCA via the Euclidean embedding matrix has superior topological preservation than DC-PCA via the Laplacian
matrix, the two-dimensional explained variances for the full and truncated ARLL data sets are marginal at best—see
column 2 of Table 2.

4.3 Generalized Matrix Decomposition and PC-PCA

There are recent generalizations of PCA that do consider structural dependencies [4, 23, 24, 28]). We focus on the
most related generalization based upon the Generalized Matrix Decomposition (GMD). It was first developed by [23]
and later expanded by [24]. Let S and F be two positive semi-definite matrices of size m×m and n×n, respectively.
GMD finds the direction vectors that solve the following optimization problem:

max
v(1),...,v(k)

k∑
j=1

vT
(j)FCSFv(j) subject to vT

(i)Fv(j) = δij , i, j = 1, . . . , k. (23)

where CS = XTSX and the ith PC is given by t(i) = XFv(i). When S = I and F = I, GMD reduces to the ordinary
PCA. Although [24] uses the power method as the eigensolver, it is illustrative to recast (23) as a generalized eigenvalue
problem1:

(FCSF)v = λFv. (24)
1Although the power method has many desirable advantages, e.g., easy to implement and computationally lightweight, it

is not recommended for large number of PCs k unless re-orthogonalization is performed to ensure that the current eigenvector
v(k) remains orthogonal to previous eigenvectors.
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Of particular interest is when the feature similarity matrix F is set to the identity matrix. When F = I, the
generalized eigenvalue problem in (24) reduces to the PC-PCA in (17). Moreover, we are interested in the PC-PCA
case when we set both S = D and F = I where D is the matrix containing all squared pairwise distances between
the UMAP-projected samples in A.

The third column of Figure 4 illustrates the PC-PCA projections via embedded Euclidean distances (i.e., (24)
with S = D) on the ARLL data sets. Compared with DC-PCA via embedded Euclidean distances, PC-PCA does
not achieve an appreciable separation of samples on the full ARLL data set with respect to collection times and
treatment. However, on the truncated ARLL data set, PC-PCA does show sample separation between early and
later collection times. In the presence of the large water absorption band, PC-PCA has a more difficult time showing
phenomenologically meaningful clusters of a physical nature compared to the truncated data set. Recall that the
crucial projection difference between DC-PCA and PC-PCA is the difference in the orthogonality constraints: we
either enforce that the dual (score) vectors are orthogonal, or we enforce that the primal (eigenvectors) are orthogonal.
Compared to DC-PCA, the explained variances are significantly higher for PC-PCA—see column 3 of Table 2.
However, when we compare the PC-PCA projections in Figure 4 and the PCA projection in Figure 2 using only the
first and third PCs, there is not much qualitative difference between PC-PCA and PCA. (The second PC for PCA
has little or no variation with respect to ARLL sample separation.) Compared to PCA, PC-PCA does have slightly
more collection time separation (early collection times {1, 2, 3}) versus later collection times {4, 5, 6}) in the direction
of the first PC.

EXPLAINED VARIANCE
DC-PCA (Laplacian) DC-PCA (Euclidean) PC-PCA

FULL 0.3% 1.5% 58.8%
TRUNCATED 0.4% 2.2% 49.0%

Table 2: The two- and three-dimensional explained variance associated with DC-PCA and PC-PCA.

4.4 Approximation Error and Topological Preservation

In the discussion so far regarding DC-PCA and PC-PCA projections, we have not defined a metric which measures
how close these projections preserve or reconstruct the UMAP sample topology. Our discussion in this regard has
been intentionally qualitative as opposed to quantitative, to reproduce the sample-to-sample associations revealed
by UMAP. Historically, the concept of explained variance in the case of PCA has been deemed the gold standard
by which one judges how close or true a low-rank approximation is to the original data. For example, in the case
of PCA, the low-rank approximation is typically expressed in terms of scores and loadings: Xapprox = TkVT

k , or
Xapprox = Tk(VT

k Vk)−1VT
k when Vk is not orthonormal[29]. The explained variance associated with a low-rank

approximation is often described via a Frobenius norm:

expvar =
(

1−
||X−Xapprox||2F

||X||2F

)
× 100% where ||X||2F =

m∑
i=1

n∑
j=1

x2
ij . (25)

By its very construction, PCA will always be best with respect to minimizing this norm in an unsupervised manner.
Traditionally, one computes explained variance using (25). However, this approach is based upon using Euclidean
distances ||x||22 = xTx as opposed to non-Euclidean distances xTSx where S is the embedding matrix. For consistency,
we will use (25) as the default metric by which we compute explained variance across all approaches.2

For the full and truncated ARLL data sets, and for the first two PCs, the explained variances for DC-PCA and PC-
PCA are significantly lower than the explained variances of PCA. Based upon the small values of explained variance,
both DC-PCA and PC-PCA would appear to convey little trust and are akin to visualizing noise or inchoate blobs.

2For a comparison, the two-dimensional explained variances on the full ARLL data set for PC-PCA using Euclidean and
non-Euclidean distances (where S = D) is 58.9% and 4.4%, respectively.
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However, the interesting thing is the following: it is the unexplained variance that is also very relevant. As both UMAP
and DC-PCA (and PC-PCA to a lesser extent) clearly demonstrate, PCA does a relatively poor job of compressing the
relevant low-rank signals in the first two latent dimensions. Hence, the classical description of explained variance is ill-
equipped to describe topological approximation via nearest-neighbor embedding. Although topological preservation
metrics are not uncommon in disciplines like computer vision—see [30] and references therein, they are not common
in chemometrics. Much as explained variance is the companion error metric to PCA, new accuracy or companion
metrics are likely needed in chemometrics for topologically-minded projection methods, especially as data sets get
larger and more locally structured.

Figure 5: Spectra associated with the Tablet data set. The top subplot displays the spectra—one curve for
each spectrum. The bottom subplot displays absorbance as a heatmap. The samples in the heatmap are
grouped according to spectrometer (1 and 2).

5 Projections and Associated Eigenvectors
We introduce another data set known as Tablet. In 2002, the International Diffuse Reflectance Conference published
a “Shootout” data set consisting of spectra from 655 pharmaceutical tablets measured on two separate spectrometers
using a range of 600-1898nm at 2nm intervals for a total of 650 wavelengths[31]. Combining the data from both
spectrometers, we have 1310 samples (655 samples from each instrument). Our goal is to assess whether PCA,
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UMAP, PC-PCA and DC-PCA can find meaningful differences in the spectra between the two spectrometers via
their respective projections. Figure 5 displays the absorbance spectra. The top subplot shows the absorbance
waveforms as a function of wavelength—one curve per spectrum. The bottom subplot shows the absorbance values
as a heatmap. The samples are grouped according to spectrometer. The differences between spectrometers occur
mainly at two locations: the wavelength band around 700nm and the wavelength band around 1700nm.

5.1 Projections on the Tablet Data Set

Figure 6 illustrates the two-dimensional projections associated with PCA, UMAP, DC-PCA and PC-PCA on the
Tablet data set. The first row corresponds to PCA. Column 1 is a three-dimensional PCA projection, with columns
2, 3, and 4 displaying all two-dimensional PC combinations. The second row corresponds to the projections associated
wit UMAP, DC-PCA and PC-PCA. The samples are color-coded according to spectrometer (1 or 2). Both DC-PCA
and PC-PCA use the squared Euclidean distances as the embedding matrix derived from the corresponding UMAP
projections. For PCA, it takes the inclusion of the third latent dimension to show separation between spectrometer
membership. Both DC-PCA and PC-PCA show separation across spectrometers using only two latent dimensions.

The DC-PCA projection for the Tablet data set is a faithful reproduction of UMAP (modulo reflection) but
perhaps it is too faithful of a reproduction. In the next subsection, we will next examine the two leading eigenvectors
of both the ARLL and Tablet data sets and the linear projection methods across PCA, DC-PCA and PC-PCA,
paying attention to the amount of oscillation (or parsimony) across wavelengths.

Figure 6: Projections associated with Tablet data set across various projection methods. With the
exception of the subplot at the upper left (which is a three-dimensional projection), two-dimensional
projections associated with PCA, UMAP, DC-PCA and PC-PCA are displayed. The first row corresponds
to PCA, with columns 2, 3, and 4 displaying all two-dimensional PC combinations. The second row
corresponds to the UMAP, DC-PCA (with the Euclidean embedding matrix) and PC-PCA. The samples
are color-coded according to spectrometer (1 or 2).
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5.2 Eigenvectors of ARLL and Tablet

For each data set, Figure 7 displays the eigenvectors associated PCA, DC-PCA and PC-PCA, and the correlation
between eigenvectors. Columns 1 through 4 correspond to PCA, DC-PCA and PC-PCA, respectively. Rows 1 through
3, rows 4 through 6, and rows 7 through 9 correspond to the ARLL (full), ARLL (truncated) and Tablet data sets.
For each data set, there is a heatmap that displays correlation coefficients between each of the three PCA eigenvectors
and each of the two eigenvectors of DC-PCA and PC-PCA. We will highlight two aspects of eigenvector behavior that
stand out: 1) parsimony, and in particular, the high-frequency oscillations associated with DC-PCA eigenvectors,
and 2) correlation, and in particular, the correlation of PC-PCA eigenvectors with certain PCA eigenvectors.

The first two DC-PCA eigenvectors exhibit large amounts of high-frequency oscillations, i.e. there are more
alternating sign changes in the eigenvector elements vij compared to those observed with PCA and PC-PCA. In
short, the eigenvectors of DC-PCA are much less parsimonious than those of PC-PCA and PCA. In contrast, for
PCA, one would typically observe this amount of high-frequency oscillation only for eigenvectors associated with PCs
that are large in number. (And, for PCA, the corresponding high-frequency eigenvectors would be associated with
PCs with a small amount of explained variance.)

From an interpretation perspective, we have a tension between an ingrained desirability for eigenvector smoothness
(like those obtained by PCA and PC-PCA) and the topological explainability of non-smooth eigenvectors (like
those obtained by DC-PCA). The most likely explanation of the non-smoothness phenomena is the difference in
the orthogonality constraints, i.e., orthogonality in non-Euclidean distances for DC-PCA versus orthogonality in
Euclidean distances for PC-PCA. Each constraint in the Euclidean space (vT

(i)v(j) = δ) involves the sum of n terms
(n is the number of wavelengths) while each constraint in the non-Euclidean space (vT

(i)Cv(j) = δ) involves n2 terms.
For example, in the case of the full ARLL data set, the orthogonality constraints for PC-PCA and DC-PCA involve
the sum of n = 1153 and n2 = 11532 terms, respectively. As a result, the size of the possibility space that can satisfy
the non-Euclidean orthogonality constraints of DC-PCA is much, much larger than the possibility space associated
with PC-PCA. In short, parsimony of eigenvector shape for the first few PCs is not explicitly encoded by DC-PCA.
But that is not the purpose of the UMAP-infused DC-PCA scheme. The purpose is to optimize an embedding in a
low-dimensional space that preserves nearest-neighbor sample structure. Although the lack of shape parsimony for
DC-PCA may be a “bridge too far” for some, simply having the eigenvectors themselves provides more information
than it is possible to obtain from UMAP alone. For example, for the full ARLL data set in Figure 4, the sample
collection times (early versus later) for DC-PCA are separated along the first PC. Hence, the wavelengths associated
with the largest components in magnitude for the first eigenvector would be the most responsible for collection time
separation. Likewise, the wavelengths associated with the largest components in magnitude for the second eigenvector
would be the most responsible for samples separated by treatment.

The second aspect of eigenvector behavior that stands out is the correlation between certain eigenvectors of PCA
and PC-PCA. For the full ARLL data set, the eigenvectors associated with the first and third PCs of PCA are highly
correlated with the eigenvectors associated with first and second PCs of PC-PCA, respectively; see the heatmap of
eigenvector correlations in the third row in Figure 7. For the truncated ARLL data set, the eigenvectors associated
with the second and third PCs of PCA are highly correlated (positive and negative) with the eigenvectors associated
with the second and first PCs of PC-PCA, respectively; see the heatmap of eigenvector correlations in the sixth
row in Figure 7. (The highly negative correlation is due to the non-uniqueness of eigenaxis direction.) A similar
story also holds for the Tablet data set—the eigenvectors associated with the first and third PCs of PCA are highly
correlated (negative and positive) with the eigenvectors of the first and second PCs of PC-PCA, respectively; see the
heatmap in the ninth row of Figure 7. In effect, PC-PCA is functionally equivalent to principal component selection,
i.e., PC-PCA removes a PC that it does not need to encode and preserve topological information (the second PC
in the case of full ARLL and Tablet data sets, and the first PC in the case of truncated ARLL data set). From an
interpretation perspective, the close connection between the parsimonious eigenvectors of PCA and PC-PCA is likely
to be deemed highly desirable. However, as evidenced by the projections in Figure 6, the striving for parsimony in
eigenvector shape in PC-PCA is done at the expense of preserving UMAP-based topological structure.
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Figure 7: Eigenvector plots and correlation coefficients for PCA, DC-PCA and PC-PCA. Rows 1 through
3, rows 4 through 6, and rows 7 through 9 correspond to the full ARLL, truncated ARLL and Tablet data
sets. Columns 1 through 3 correspond to PCA, DC-PCA and PC-PCA, respectively. Each curve in blue
is associated with one of the eigenvectors (v1, v2 and v3). Associated with each data set is a heatmap
(rows 3, 6 and 9): a correlation coefficient is computed for each of the three PCA eigenvectors against
each of the first two eigenvectors of DC-PCA and PC-PCA.
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5.3 Projection of New Samples

DC-PCA and PC-PCA prove useful for preserving local nearest-neighbor associations and generating visualizations
for the ARLL and Tablet data sets. However, if one wants to make these projections more useful for multivariate
calibration purposes, then it is important to create a calibration model and then apply that model to new spectra
(e.g., as one would do via cross-validation). If we want to use DC-PCA and PC-PCA to learn a latent subspace, then
we should be able to easily project new samples onto that subspace such that the new samples appear in locations
close to their respective members in the calibration set. Fortunately, DC-PCA and PC-PCA make this easily possible
via a simple post-multiplication by the eigenvector matrix.

UMAP and other nonlinear projections can also map new samples to their respective latent spaces, but the non-
linear and non-parametric transformation processes that act on these new samples can be time-consuming. Recently,
though, a parametric version of UMAP has been created, and this has a beneficial side-effect of accelerating the
nonlinear projection of new samples onto the UMAP latent space[32]. As mentioned before, UMAP proceeds in two
steps. First, UMAP constructs a graph of local relationships between data points. Second, it then optimizes an
embedding in a low-dimensional space that preserves the structure of the graph. The parametric UMAP approach
replaces the second step of this process with an optimization of parameters from of a deep neural network. How-
ever, the parametric UMAP, like its non-parametric counterpart, still does not provide information that relates the
importance of a given wavelength on a sample spectrum.

The protocol for creating the calibration set of samples (denoted as CAL, i.e., the training set) and the validation
set of samples (denoted as VAL, i.e., the test set) is as follows. The ARLL samples within each of the six sample
collection levels are split into two groups. We use a 90%:10% split for each level: 90% of the within-level samples
belong to the CAL subset while the remaining 10% are set aside for the VAL subset. Across the levels, all of the CAL
subsets are pooled together while the new samples consist of the pooled VAL subsets. The DC-PCA and PC-PCA
models are all derived from the pooled CAL samples and are comprised on the following: 1) the mean spectrum,
2) the embedding matrix of squared Euclidean distances between UMAP projected samples, and 3) the eigenvectors
for the first two PCs. The pooled VAL spectra are then mean-centered with respect to the CAL spectral mean and
post-multiplied by the CAL-derived eigenvector matrix.

For the Tablet data set, we also follow a (90%,10%) split: With each spectrometer, 90% of the samples belong to
the CAL subset while the remaining 10% are set aside for the VAL subset. Across the two spectrometers, the CAL
subsets are pooled together and the new samples consist of the remaining pooled VAL subsets. The DC-PCA and
PC-PCA models are created from the pooled CAL samples, and the CAL and VAL samples are projected using their
respective DC-PCA and PC-PCA models.

Figure 8 displays the projections for both the calibration and validation sets. The VAL samples are displayed as
thick-bordered triangles. Rows 1 and 2, rows 3 and 4 and row 5 correspond to the full ARLL, the truncated ARLL,
and the Tablet data sets. Row 2 is the same as row 1 (and row 4 is the same as row 3) except that the ARLL
samples have been color-coded according to sample treatment. Both DC-PCA and PC-PCA are both effective at
learning a latent subspace, and projecting new samples into that subspace. All projections show new samples from
the VAL set being projected into locations that are co-localized with the CAL set (with the possible exception of
PC-PCA on the full ARLL data set since PC-PCA did not show pronounced separation of samples in this case).
Across the data sets, DC-PCA learns a latent model that generalizes well to new samples, and this is in spite of the
non-parsimonious and oscillatory nature of the DC-PCA eigenvectors. This stands in contrast to the perspective of
ordinary PCA where the inclusion of highly oscillatory eigenvectors is deemed undesirable since these eigenvectors are
associated with overfitting. Given that the DC-PCA models do generalize well to new samples, we surmise that these
eigenvectors are capturing real information regarding low-rank signals associated with physically relevant phenomena
(i.e., differences across collection times, treatments, or spectrometers). Moreover, this capturing by DC-PCA of low-
rank signals is likely attributable to the accommodation of nearest-neighbor structure (via the embedding of pairwise
distances associated with UMAP-projected samples). Given the quite parsimonious eigenvector behavior of PC-PCA
in Figure 7, it is encouraging that there is as much unsupervised separation between samples of different type as there
is. (And this separation is achieved by effectively removing the first or second PC, a PC that is deemed influential
by PCA).
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Figure 8: DC-PCA and PC-PCA models applied to new samples. The full ARLL, the truncated ARLL
and Tablet data sets correspond to rows 1 and 2, rows 3 and 4, and row 5, respectively. The first and
second columns correspond to the DC-PCA and PC-PCA projections, respectively. For each factor (e.g.,
collection times, treatments or spectrometers), the samples within each factor level are split into two
groups: 90% (CAL) and 10% (VAL). The DC-PCA and PC-PCA models are constructed from the pooled
CAL subset of samples across all factor levels, and the new samples consist of the pooled VAL samples
across all factor levels. Both the pooled CAL and VAL samples are projected using only the CAL models
for DC-PCA and PC-PCA. The projected CAL are displayed as circles, while the the projected VAL
samples are displayed as thick-bordered triangles.
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5.4 Computational Considerations

The UMAP implementation used in this paper is from an implementation developed in the Herzenberg Lab at Stanford
University[33]. The code is written in MATLAB with external program interfaces (which compiles and links C++
source files), and is a faithful rewrite (except for the nearest neighbor search) of the original Python implementation
from [3]. This MATLAB/C++ results in superior speed-up performance over the default Python implementation.
We used the default settings.

The primary purpose of the UMAP-embedded PCA variants mentioned in this paper is to provide eigenvectors:
eigenvectors for elucidating the relationship between wavelength and sample location, eigenvectors that make it easy
to project new samples onto a learned latent space, and eigenvectors that encode nearest-neighbor structure. However,
these eigenvectors can numerically be provided in a number of ways. This paper proposes the following: perform
UMAP to acquire pairwise Euclidean distances of projected samples, followed by a generalized eigenvalue problem.
If one wants to accelerate PC-PCA or DC-PCA, then one could use a power method approach—as was mentioned in
Section 4.3 with the GMD scheme of [24]. However, the computational bottleneck for DC-PCA and PC-PCA will still
be the initial UMAP computation. Although UMAP is reasonably fast, it is not yet applicable to massive data sets.
For context, MNIST, a classic toy data set in the machine learning community—70000 samples by 784 features—can
be solved in minutes using the classical UMAP implementation [34]. As nonlinear topological projection methods
such as t-SNE and UMAP continue to evolve, their computational speed will become faster—much in the same way
that classical SVD and PCA continue to evolve with respect to computational speed-up (e.g., from deterministic
PCA to its stochastic variants involving randomized projections).

6 Conclusion and Future Work
In this paper, we have successfully embedded externally-supplied topological information via UMAP (as a dissimilarity
weighted covariance matrix) into PCA. One modified PCA model—DC-PCA–mimics the nearest-neighbor structure
revealed by UMAP, while the other modified PCA—PC-PCA—more closely mimics PCA (with either the first and
second PC of PCA being suppressed). Both DC-PCA and PC-PCA create models that allow for the projection of
new samples into learned latent subspaces such that new samples are projected in locations that are co-localized with
their calibration sample counterparts.

The intent in this paper was modest—to use UMAP as an external source of a priori domain information that
encodes local nearest-neighbor sample associations. This encoding was accomplished by computing the squared
Euclidean distances between all projected UMAP samples, and embedding this Euclidean distance matrix into PCA
as a weighted covariance matrix, which was subsequently maximized subject to orthonormality constraints on the
score or loading vectors. However, our unsupervised exploration of embedded matrices was limited and additional
unsupervised exploration for the enhancement and detection of low-rank signals is warranted. For example, regression
applications using non-Euclidean embedding matrices have shown success with the analysis of microbiome data
involving nuclear magnetic resonance data[4, 35]. In the context of calibration transfer and maintenance, non-
Euclidean Laplacian matrices were custom built for pulling together samples from different instruments into a common
calibration domain[17].

Ideally, a careful design of experiment imbues the covariance matrix C = XTX with information about where
and how often measurements were made, and what the standard deviations of those measurements were. However,
the embedding of a dissimilarity matrix S into C = XTX cannot be done in an arbitrary or ad hoc fashion, otherwise
such information will be lost or not be fully utilized. Numerically, the spectral properties of S have to be sufficiently
understood such that the resulting eigenvalue problems involving CS have desirable properties, e.g., positive (or
negative) semi-definiteness. Informationally, both S and the spectra X should be complementary yet co-informative,
e.g., both are informative for clustering samples but from different view points. In the statistical and machine
learning community, measures such as the Hilbert-Schmidt Information Criterion (HSIC; [36]) are commonly used
for measuring the co-informativeness (or conversely, statistical independence) of two data sets. In chemometrics,
such criteria are derived mostly from the data fusion community where one extracts common and distinct subspace
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information—see [37] and references therein for a recent summary of approaches. In the future, a combination of
approaches related to both HSIC and data fusion could be used to assess whether one should embed a dissimilarity
matrix or not, and if so, measure approximately the information gained from such an embedding. This assessment via
some embedding fitness criterion is likely to be application dependent, though. For example, embedding a Laplacian
matrix based upon UMAP projected distances did not work well (enough) in this paper, but using embedded Laplacian
matrices for calibration transfer purposes did work well in [15, 17, 18].

As mentioned in Section 5.2, one may want to mitigate the amount of high-frequency oscillation in the DC-
PCA eigenvector profiles for the first two PCs. To rectify this, one could imagine a homotopy approach where we
continuously vary between DC-PCA and PC-PCA:

CDv = λCτ v where Cτ = (1− t)C + τI, 0 ≤ τ ≤ 1. (26)

As τ increases from 0 to 1, (26) transitions from DC-PCA to PC-PCA. Instead of a homotopy, another potential
remedy would be to create a compact or sparse approximation to the matrix C. By radically reducing the number
of non-zero elements in C, one could also reduce the number of terms used to satisfy the orthogonality constraints
vT

(i)Cv(j) = δij associated with DC-PCA. These and other remedies would also go a long way to addressing a
more fundamental question: is eigenvector smoothness compatible with the preservation of nearest-neighbor sample
structure?

In Section 4.4, better metrics for computing the approximation error between the original data X and the low-
rank reconstruction are warranted. Explained variance via Euclidean distances are well understood, but explained
variance in non-Euclidean distances are not as well-understood as they could be for a general chemometric audience.
Furthermore, the importing of alternative metrics outside of chemometrics that quantify topological preservation as
opposed to variance preservation requires further research effort.

A follow-up numerical assessment of UMAP, DC-PCA, PC-PCA and PCA is also warranted. Such an assessment
would explore a wide range of parameter settings. For example, varying the number of nearest neighbors (15 nearest
neighbors was the default) used in UMAP results in a trade-off between prioritizing global and local structure. As
the number of nearest neighbors increases, UMAP connects more and more samples when constructing the graph
representation of the high-dimensional data, which in turn leads to a projection that more accurately reflects the
global structure of the data. Moreover, one can also explore the following: a wider range of spectroscopic sets (not
just the two near infrared data sets used in this paper), a wider range of data sizes within a data set (e.g., 20%, 40%,
60%, 80% and 100% of samples). All of the these assessments would be numerically timed to see where computational
bottlenecks occur.
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