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ABSTRACT

Transfer learning (TL), the sub-discipline of machine learning devoted to learning from different
domains, has gained increasing attention over the past decade. With the current contribution, we aim
at giving a concise overview on theory, concepts and applications of TL from a chemometrician’s
perspective and draw some connections to previous work on calibration model updating/adaptation
and calibration transfer. Furthermore, we provide a demonstration of the application of TL in
analytical chemistry and discuss the benefits and challenges associate with its use for real-world
problems. We conclude the paper by discussing some open problems and by contemplating on future
research directions.

Keywords transfer learning, domain adaptation, covariate shift, model maintenance, calibration
transfer, data fusion

1 Introduction

According to definitions given by Pan et al., transfer learning (TL) aims at leveraging knowledge gained when learning
to solve one task to solve another, related task [1]. TL has gained increasing attention over the past decade, especially in
the computer vision domain, as deep neural networks (DNN) trained on massive amounts of (image) data have become
publicly available [2]. Such pre-trained models do not usually give satisfactory results when applied in new domains.
For instance, a (DNN) model trained on images of objects (e.g. cars and bicycles) on a white background will run
into trouble classifying these objects correctly on images from real-world scenes. Likewise, a chemometric model
for the determination of the concentration of some analyte in water (from a spectroscopic signal) will typically give
wrong results when applied to the determination of the same analyte e.g. in blood. As we will see later, TL provides
mechanisms to adapt such models to this type of changes.

A large number of TL approaches have been developed over the past decades. Our intention is to provide the average
reader, with a background in chemometrics, a concise overview on the theory and (in our view) the most important
concepts that are relevant to applications in analytical chemistry rather than to give an exhaustive overview of the
current state-of-the-art (SoA) in the rapidly evolving field of transfer learning. For the interested reader, we refer to the
excellent reviews by Pan et al. and Weiss el al. [1] (for a general overview on TL) and Zhuang et al. [3] for an in-depth
discussion of the current SoA [4]. Also, we will restrict our considerations mostly to application of TL to multivariate
regression/calibration problems in spectroscopy.

We will continue by introducing some important notation and definitions from the TL field in section 2.1. We will then
introduce the theory of learning from different domains in section 2.2. In section 2.3 we will explain some concepts and
how these pertain to typical applications in analytical chemistry. In section 3 we will highlight previous work on TL
in chemometrics and in section 4 we will showcase the use of TL on simulated and real-world data including some
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discussion on the benefits, challenges and pitfalls of applying TL in practice. In section 5 we will provide some thoughts
on where we see opportunities for the application of TL in chemometrics and how to address some open challenges in
future work, and section 6 concludes the paper.

2 Theory

2.1 Notation

We will follow standard notation used in chemometrics, with upper and lower case boldface symbols (e.g. X and x)
denoting matrices and vectors, respectively. Unless otherwise stated, upper and lower case roman letters will be used
to denote random variables (e.g. X) and scalars (e.g. x), and vectors are column vectors. By T and −1 we denote the
transpose and inverse operation, respectively. I and 1 will be used to indicate an identity matrix and a column vector of
ones, respectively, of appropriate size. With ∥·∥2 and ∥·∥F we denote the ℓ2- and the Frobenius norm (the Frobenius
norm is an extension of the standard ℓ2 norm except that an n × p matrix is treated as a vector of length np). The
superscripted † in X† denotes the Moore-Penrose inverse of the matrix X. Comma and semicolon notation are used to
denote horizontal and vertical concatenation or stacking of matrices and/or scalars, e.g. [x,y] and [x;y].

We further follow the definitions given in [5] and let a domain consist of a marginal distribution D over an input space
X ⊆ Rp and a labeling function f : X → R that assigns a label Y (e.g. analyte concentration) to x ∼ D, i.e. ⟨D, f⟩.
The hypothesis h : X → R is a function (i.e. the model) by which we try to approximate f using an appropriate learning
algorithm (e.g. PLS regression). The standard setting in TL considers two domains: the source domain ⟨DS , fS⟩ and
the target domain ⟨DT , fT ⟩. In chemometrics, the source and target domains are commonly referred to as the primary
and secondary "condition", respectively.

We will use P (X), P (Y |X) and P (X,Y ) to denote the marginal, conditional (Y conditioned on X) and joint
probability distributions, respectively, and E[·] to denote expectation. We will express the labeling function f as
conditional probability distribution P (Y |X) throughout the paper. By PS(·) and PT(·) we further denote distributions
associated with source and target domains, respectively. The nS × p matrix XS (nS samples by p variables) and nT × p
matrix XT will denote source and target domain spectra and yS (nS × 1) and yT (nT × 1) the corresponding reference
values, respectively. We further define the source means as µx

S = (1TXS) /nS and µy
S = (1TyS) /nS, and the target means

as µx
T = (1TXT) /nT and µy

T = (1TyT) /nT.

2.2 Theory of learning from different domains

Statistical learning theory is based on the assumption that training and test data originate from the same domain, i.e.
that they are sampled from a common, joint probability distribution P (X,Y ). Under this assumption, the training
error from a (calibration) model is a good proxy for the test error [6]. However, in many real-world applications, this
assumption does not hold and the distributions of training and test data might be considerably different.

In their seminal paper, entitled A theory of learning from different domains, Ben-David et al. investigated the conditions
on the training (source domain) and test (target domain) distributions under which a classification model is expected to
perform well [5]. The authors prove that the target error under a hypothesis h has the following upper bound

ϵT (h) ≤ ϵS(h) + d1(DS ,DT ) + min [EDS
[|fS(x)− fT (x)|],EDT

[|fS(x)− fT (x)|]] , (1)

where ϵS(h) denotes the error in the source domain and the last term being a measure of the difference between the
(unknown) labeling functions in the source and target domains. As we will see later, in some instances, it is reasonable
to assume that this difference is small. The second term on the right-hand side of Eq. (1) is referred to as the L1

divergence and is a measure of the difference between the marginal distributions of the source and target domains.
Ben-David’s theory formalizes the "intuition" that the source error is a good proxy for the target error if the domains are
"similar" in terms of their marginal and conditional distributions P (X) and P (Y |X), respectively.

As we will see in the next sections, a widely used approach to TL is to find transformations (e.g. latent representations)
of one (or both) domains in order to increase the similarity of the marginal distributions of source and target domain
samples, i.e. to "make them look as if they were sampled from the same underlying distribution".

2.3 Nomenclature

We continue by introducing some terminology and definitions that are widely used in the TL community and that are
relevant to applications in chemometrics.
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Figure 1: Types of domain shifts. A) Covariate shift. B) Prior shift. C) Conditional shift. The blue and red lines
(spectra) correspond to the input data from a source and a target domain, respectively

Transfer learning and domain adaptation Transfer learning (TL) and domain adaptation (DA) are terms that are
often used interchangeably. However, according to Pan et al. [1], TL relates more broadly to techniques that can cope
with situations where the source task can be different from the target task (e.g. when a source model that discriminates
between cars and trucks should be adapted to discriminate between bicycles and motorbikes), whereas in DA the task is
usually the same across the domains. Along these lines, DA can be considered a special case of TL. Some authors use
the terms inductive and transductive TL to refer to what we here call TL and DA, respectively. In contrast to research in
computer vision, the vast majority of publications on TL in chemometrics and analytical chemistry have considered DA
rather than TL so far.

Supervised, semi-supervised and unsupervised TL and DA Supervised TL/DA refers to the scenario when all
training samples are labeled. We will refer to semi-supervised TL/DA, when some of the source training samples are
unlabeled, and when some of the target training samples are unlabeled (e.g. when for some samples only the spectra
are available but not the reference values). Unsupervised DA refers to situations, where all the target domain training
samples are unlabeled. When the source and target tasks are different (i.e. when the labeling functions fS and fT
introduced in the previous section are different), some subset of labeled samples from the target domain is required
to adapt a source model to a target domain. As a result, unsupervised DA will not likely be feasible. However, when
fS ≈ fT , and if there exists a hypothesis h that performs well in both domains and the domains are sufficiently similar,
unsupervised DA is likely to be feasible [7]. Unsupervised TL, on the other hand, refers to learning from only unlabelled
data in both, the source and the target, domains and is considered out of scope for this contribution.

Covariate, prior and conditional shift We proceed by introducing some concepts that will be important to know
when applying TL/DA in analytical chemistry. Figure 1 exemplifies the three ways how domains can differ (see also
Table 1) using some simulated spectra. The red and blue lines correspond to input data from a source and a target
domain, respectively and the histograms on the left show the probability density of xi = [x

(1)
i , . . . , x

(n)
i ]T for the i-th

variable/spectral channel and the response Y .

In case of covariate shift, the marginal distribution of the inputs P (X) is different while the distribution of the response
given the inputs P (Y |X) (and thus also P (Y )) remains unchanged between the domains (Table 1). A typical scenario
in analytical chemistry involving covariate shifts arises when samples of similar composition are measured on different
spectrometers, where differences e.g. in the sensitivity of the detector can lead to a change of the width of the
marginal distribution. The strength of the illumination source, on the other hand, will usually impact the amount
of absorbance and thus affects the location of the input distribution. Together, these effects can lead to situations
where PS(X) ̸= PT(X). Simple covariate shifts such as the one shown in Figure 1A can easily be accounted for by
appropriately (re-) scaling the data (Figure 2A). However, more complicated changes in the covariance structure of
the predictors eventually requires more sophisticated treatment. Generally speaking, covariate shifts can be corrected
by employing transformations, e.g. of the form W : Rp → Rp, either of the source (red), the target (blue) or both
spectra such that PS(WS(X)) ≈ PT(WT (X)) and PS(Y |WS(X)) ≈ PT(Y |WT (X)) [8]. In fact, many preprocessing
methods in chemometrics (e.g. baseline correction, scaling, standard normal variate transformation, piecewise direct
standardization, multiplicative scatter correction, etc.) can be regarded as employing such transformations (Figure
3). As we will see later, covariate transformations that directly "align" the input distributions in a preprocessing step
(section 3.1.2) or implicitly when modelling the response (section 3.2.1) are widely used in domain adaptation.

Prior shift refers to situations, where the distribution of the response P (Y ) is different in the domains (Figure 1B).
Similar to the covariate shift example, the blue spectra have an overall higher intensity with the corresponding probability
density being higher and more shallow for Xi, which however is due to smaller values and spread of the response Y .
Using a (calibration) model derived from the blue spectra for inference on the red spectra might or might not give
accurate results depending on whether the labeling function is different or not but is in general not advisable.

3
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Figure 2: Covariate vs. conditional shift. The scatterplots show the empirical joint distribution of the i-th variable
Xi and the response Y for the data shown in Figure 1A (covariate shift) (A) and Figure 1C (conditional shift) (B).
The transformation W (·) re-scales the target domain samples such that W (x

(k)
T ) = (x

(k)
T − µx

T)
σS

σT
+ µx

S , where σS

and σT denote the standard deviation of the empirical distributions of PS(X) and PT(X), respectively. It can be seen
that re-scaling of the predictors aligns the empirical joint distribution in case of covariate shift (A) but not when the
difference between the domains is characterized by a conditional shift (B).

Figure 3: Effect of direct standardization (DS) on P (X). Left: The first two principle components fitted to ATR-FTIR
spectra of adaxial leaf surfaces of samples from the genus Fragaria (red) and projection of the spectra from abaxial leaf
surfaces of the same samples (blue). Right: The same projection after direct standardization of the blue samples. Note
that only a subset of the samples were used to derive the transformation matrix F = X†

blueXred.

Conditional shifts are the most frequent ones encountered in practice and occur, for instance, when an additional signal
(e.g. from an interferrent) is introduced in one of the domains. In the example in Figure 1C, the blue spectra contain
an additional peak, which similar to the covariate shift scenario, changes the marginal distribution of the inputs (i.e.
PS(X) ̸= PT(X)). In contrast to the covariate shift scenario from Figure 2A, where we could "align" the (empirical)
joint distribution P (X,Y ) of the target to the one of the source domain by simply re-centering and scaling XT , the
same transformation does not work with conditional shifts (Figure 2B). This is because the additional peak at Xi (blue
spectra in Figure 1C) changes the conditional distribution P (Y |X), i.e. the correlation between the i-th variable and
the response. Without knowing the values for the response for (at least some of) the target domain spectra, we can not
quantify that change. Thus, compensation of conditional shifts requires that labeled data (e.g. spectra with reference
values) are obtained from the target domain in order to account for the additional variability not present in the source
domain. However, as we will see in section 4, unsupervised compensation of the covariate shift can be sufficient if
analyte and interferent signals are just weakly overlapping, i.e. if only a subset of the X-variables are affected by the
conditional shift.

3 PREVIOUS WORK

The problems associated with domain shifts have been studied in analytical chemistry and chemometrics long before
transfer learning have become a popular discipline in machine learning.

See [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] for
long-standing problems with domain shifts in chemometrics. More recent examples include calibration transfer (CT)
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Table 1: Different ways of how source and target domains can differ in terms of the underlying distribution of the inputs
X , the response Y or the response conditioned on the inputs, i.e. Y |X .

Concept Formal Definition Description

Covariate shift PS(X) ̸= PT(X)
PS(Y |X) ≈ PT(Y |X)

Change in the covariance structure
of the predictors and/or spectral off-
set, e.g. due to baseline effects, peak
broadening etc.

Prior shift PS(Y ) ̸= PT(Y ) Change in the distributon of the re-
sponse, e.g. change in concentration
range of the analyte of interest.

Conditional shift PS(X) ̸= PT(X)
PS(Y |X) ̸= PT(Y |X)

Change in the correlation between
predictors and response, e.g. due to
presence of a new interferrent.

problems, where the aim is to transfer calibrations between similar devices (typically spectrometers) with (slightly)
different instrumental responses [38, 39], applications where the physical and/or chemical properties of the test samples
differ from those of the calibration samples [40, 41, 42] or some environmental condition (e.g. temperature, humidity)
has changed between the time of calibration and application of the model [43]. In general, a source (or primary)
calibration model may not be maintained to new conditions, e.g. due to instrumental drift or uncalibrated spectral
features appearing in new target (or secondary) samples occurring later in time. As a result, calibration transfer and/or
maintenance (CTM) mechanisms are needed to accommodate the new chemical, physical, environmental, and/or
instrumental effects not spanning the source (calibration) domain. To be consistent with terminology introduced in
prior sections, we will use the TL/DA-based domain nomenclature (i.e. source and target) as a pseudonym for the
chemometrics-based domain nomenclature (i.e. primary and secondary). Also, we will use the term domain difference
as an umbrella term for the unmodeled sources of spectral variability and/or response variability (prior shift) within
the target samples that are not accounted for by the source calibration model. The vast majority of CTM approaches
roughly fall into four categories:

1. Adjust the instruments. For example, one can use libraries of reference samples measured on both the source
and target devices to adjust the instrument response or wavelength registry of the target device to match the
instrument response of the source device.

2. Adjust the spectra. One can preprocess the spectra from the source and the target conditions using techniques
such as e.g. baseline and multiplicative scatter correction (MSC), finite impulse response (FIR) filters,
derivatives, wavelets, and/or wavelength selection to obtain a transformed set of spectra that are robust to
domain differences. Procrustes analysis-based approaches (e.g, piecewise direct standardization; PDS) that aim
at making the target spectra match or "look" like the spectra from the source condition via rotation, dilation,
and translation fall in this category, too.

3. Adjust the model. Approaches from this category update (or rebuild) the source calibration model by
augmenting the original coefficient matrices involving source spectra and reference measurements with
auxiliary matrices involving both source and target domain information. The idea is to infuse the original
calibration model with a priori chemical and/or spectroscopic information such that the modified calibration
model is less sensitive to domain differences.

4. Adjust the predictions. For example, slope and bias correction can be used to adjust the predictions of a
source model when applied to target domain samples.

In this section, we review a select set of CTM approaches from the second and third category that relate to the concepts
in Table 1 and can thus be viewed from a domain adaptation perspective. As we shall see later on, the vast majority of
CTM approaches address covariate and conditional shifts, while CTM approaches that can accommodate prior shifts
are less well represented.

3.1 Adjust the Spectra

The CTM techniques addressed here focus on linearly transforming the target and/or source spectra such that both sets
of spectra are subsequently shape matched with respect to domain distributions. Before transformation, the source
and target spectra are typically characterized by covariate (PS(X) ̸= PT(X)) and/or conditional shifts (PS(Y |X) ̸=
PT(Y |X)). After transformation, the intent is to match (as much as possible) the domain distributions of the source
and target samples such that (PS(X) ≈ PT(X)). Once the linear transformation matrix W has been computed, all
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subsequent spectra will be projected via XPROJ = XW and calibration and prediction will be done in the transformed
space.

3.1.1 Direct Standardization and Variants

In chemometrics, perhaps the most popular technique in this CTM category is direct standardization (DS) and its
variants [12, 36, 37, 44]. In DS, one maps the target spectra onto the source spectra by a linear transformation matrix
W that minimizes ||XTW −XS||2 on a set of matched samples (i.e. calibration standards). Several variants of DS exist,
e.g. piecewise direct standardization (or PDS) or penalized/regularized versions that encourage certain properties such
as smoothness and/or sparsity [44]. All these methods have been developed based on the intuition that matched samples
should return equal (spectroscopic) signals when measured on different devices. However, (successful) instrument
standardization usually has the (side) effect of aligning the marginal distributions of source and target domain samples
and thus correcting for covariate shift (Figure 3). Similar observations can be made with other Procustes analysis-type
methods like Standard Normal Variate (SNV) transformation that utilize translation (mean-centering), rotation and
stretching [21] or other preprocessing methods such as MSC or baseline correction. Thus, some of the most widely used
(preprocessing) techniques in chemometrics actually have a DA interpretation. As we will see in the next section, several
DA methods operate at the distributional rather than at the sample level in order to find an appropriate transformation
W.

3.1.2 Generalized Eigenproblems

Several of the earlier DA methods that have been adopted in chemometrics solve so-called Generalized Eigenproblems
(GE) of the type Bw = λCw involving two matrices B and C of size p × p [34]. A GE often emerges from the
maximization of a Rayleigh quotient, which can be subsequently transformed into a GE via traditional calculus-based
Lagrangian multiplier approaches:

max
w

wTBw

wTCw︸ ︷︷ ︸
Rayleigh quotient

⇒
max
w

(wTBw)

wTCw = 1
⇒ max

w
(wTBw − λ(wTCw − 1)) ⇒ Bw − λCw = 0 ⇒ Bw = λCw.︸ ︷︷ ︸

GE

(2)

We will be interested in the largest k (k ≪ p) eigenvalue-eigenvector solution pairs {λi,wi}, i = 1, 2, ..., k, whereby
the samples (e.g. spectra) X are projected onto a lower k-dimensional subspace such that XPROJ = XW with
W = [w1, . . . ,wk]. In the examples to follow, B and C will encode total and between-domain scatter information,
respectively (or vice versa) such that solving Eq. (2) yields subspaces that explain a large amount of the variation in X
while being (nearly) invariant with respect to domain differences (see Figure 4). We now examine two classes of GEs
which both involve Laplacian matrices.

Distance-Based Laplacians A Laplacian matrix L can be used to describe the relationship between (spectral) samples
i and j in a graph. The matrix L is a symmetric, n× n (i.e. samples times samples) matrix characterized by having
zero sums across all its rows (and columns) and being positive-semidefinite (i.e. all of its eigenvalues are positive).
The Laplacian matrix has many properties but perhaps the most interesting one for CTM purposes is its relationship
with Principal Component Analysis (PCA) [45]. Suppose u = Xw with w being a p× 1 (latent variable) vector and
X = [XS;XT] is a n× p matrix consisting of both source and target spectra that has been mean-centered, then it can be
shown that [38]

n∑
i=1

n∑
j=1

(xT
iw − xT

jw)2 Ai,j

= wT

 n∑
i=1

xiDi,ix
T
i −

n∑
i=1

n∑
j=1

xiAi,jx
T
j

w

= wTXT(D−A)Xw

= uTLu.

(3)

A and D denote the adjacency and degree matrix of a simple, undirected graph defining the weights between, and
connectedness of, each of the n data points, respectively and L = D − A. If Ai,j = 1 ∀ i, j the vector u that
maximizes Eq. (3) corresponds to the (unscaled) loading vector of the first principle component. However, one may
prefer to impose some weights Ai,j to achieve various goals such as enlarging the distance between samples belonging

6
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to different classes or minimizing the distance between domains (Figure 4). Hence, the Laplacian matrix allows one to
incorporate a priori knowledge about the relationship between samples or classes of samples.

In CTM applications (and DA), the goal is to find (domain-invariant) data representations where the differences between
domains are small. To this end, we can formulate a GE with B = XTLX and C = XTX using a Laplacian matrix of
the type [45]

Lij =

{ ∑p
j=1 d

lab
ij , i = j

−dlab
ij , i ̸= j

where dlab
ij =

{
0, samples i and j belong to different domains
dij, otherwise. (4)

with dij denoting the reciprocal Euclidean distance between data points i and j. Note that a slight modification to dlab
ij

can instead yield representations where differences between domains are large:

dlab
ij =

{
0, samples i and j belong to the same domains
dij, otherwise. (5)

An example for these types of GEs—domain minimization and domain maximizaton—are shown in the middle and
right-most plots, respectively, of Figure 4 for a NIR data set containing spectra from four different tree species1. In
Section 4, we will illustrate how this Laplacian-based GE can be used for CTM.

Figure 4: Laplacian projection schemes. Three different two-dimensional projections of the NIR spectra of four species of wood
samples are shown. The left figure shows the ordinary PCA projection while the next two show Laplacian-based projection schemes.
The middle plot shows a domain-separation projection scheme based upon Eq.(5) while the right plot shows the domain-minimization
projection scheme based upon Eq.(4).

Transfer Component Analysis and Scatter Component Analysis Two related projection schemes from the TL
community, i.e. Transfer Component Analysis (TCA) [46] and Scatter Component Analysis (SCA) [47], similarly
leverage a Laplacian matrix but instead aim to maximize the following quotient: (total scatter)/(domain scatter).
Maximizing the numerator aims to preserve the total variability of the data while minimizing the denominator encourages
finding a representation for which the source and target domains are similar. TCA expresses the (total scatter)/(domain
scatter) trade-off as B = KHK and C = I+ δKLK in Eq. (2) with K being some kernel of X = [XS;XT] (in case
of a linear kernel K = XXT), H = I− 1

nS+nT
11T (i.e. the centering matrix for K) and L being defined as

L =

[
L11 L12

L21 L22

]
L11 =

1

n2
S

1(nS,nS), L22 =
1

n2
T

1(nT,nT), L12 = − 1

nSnT

1(nS,nT), L21 = − 1

nSnT

1(nT,nS). (6)

Here, 1(nS,nT) indicates a matrix of all ones of size nS × nT. It can be shown that the corresponding GE minimizes the
so-called Maximum Mean Discrepancy

MMD(XS,XT) =

∥∥∥∥∥ 1

nS

nS∑
i=1

ϕ(xSi
)− 1

nT

nT∑
i=1

ϕ(xTi
)

∥∥∥∥∥
H

, (7)

where ϕ(·) denotes the feature map associated with the kernel and ∥·∥H denotes the reproducing kernel Hilbert space
(RKHS). For a linear kernel, the MMD corresponds to the difference between the means (i.e. first order moments) of
source and target distributions, whereas higher order moments (e.g. covariances) will be aligned when using polynomial
or Gaussian kernels [48]. In addition to total and domain scatter, SCA also aims to preserve between-class information
(in a classification context). As outlined by Andries in [34], SCA is equivalent to TCA except that L is replaced with
a regularized version of itself: L := L+ δI, when no class structure is present in the data. For both TCA and SCA,
the collection of eigenvectors W = [w1, . . . ,wk] and eigenvalues Λ = diag(λ1, . . . , λk) associated with the largest

1http://groupwentzell.chemistry.dal.ca/software.html, accessed 04/25/2021
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eigenvalues yield the desired projection: KPROJ = KWΛ−1/2 (note that when aiming to project a test sample, its kernel
with respect to the calibration set must be computed first). With respect to CTM applications, SCA and TCA were
explored in [34, 49], and they were deemed to be not that effective. In our view the main reason for the limited success
is the fact that these methods align (source and target) distributions effectively only in the non-linear case (i.e. when
using non-linear kernels). This, however, is prohibitive for small samples and/or if the relationship between inputs (e.g.
spectra) and the response (e.g. concentration) is approximately linear [49, 50].

3.1.3 Orthogonal Projections

Othogonal Projection (OP) methods, as a whole, strive to make a calibration model insensitive to interfering sources
of variation not present in the calibration set—see [51, 52, 53] and the references therein. Note that we also want to
distinguish between OP methods and orthogonal signal correction (OSC) methods that have been proposed for removing
detrimental information orthogonal to y from X–see [53] for a thorough taxonomy of OSC methods. While there are
many OP variants, we will examine one of the simplest, i.e., transfer orthognal projection (TOP), since it addresses
directly the TL/DA problem [51].

Transfer Orthogonal Projection (TOP) In TOP, one collects a matched set of samples. Instead of working with
these spectra directly, one uses difference spectra. The difference spectra are computed as the difference between the
signals of the same samples measured under different conditions (e.g. using different spectrometers). As a result, the
corresponding reference value should be (close to) zero (eliminating the need to use a reference method to obtain a
reference value).

Let G denote the m × p matrix of difference spectra (i.e. G = X(MS)

S − X(MS)

T ), the matrix containing the unwanted
sources of spectral variation (e.g. between-instrument variation). If we perform Principal Component Analysis (PCA,
or the SVD) on the mean-centered version of G such that G = UΣVT, we can define two projections: projections
onto span(G) via PG = G+G = VVT and projections onto its orthogonal complement via P⊥

G = I−PG. Note that a
key parameter in TOP is the number of loading vectors in V to use: let 1 ≤ k < m be the number of loading vectors
such that we replace V with Vk = [v1, . . . ,vk]

T. Hence, the linear transformation matrix that we seek is W = P⊥
G

whereby XPROJ = XW. The goal of the null projection is to remove k dimensions that best capture between-instrument
variability. If k is too small, then not all unwanted inter-instrument variances are removed, and the correction is not
complete. If k is too big, then too much variance is removed. One major pitfall of TOP (and of OP methods in general)
is that there is no guarantee that the spectra contained in G do not contain meaningful reference value information, e.g.,
there could be (and there often is) a large amount of spectral overlap between G and the analyte signal of interest. As a
result, OP methods can be quite deleterious if not used appropriately.

3.1.4 Generalized Least Squares

As noted in the discussion regarding TOP in Section 3.1.3, the spectra in G contains non-analyte domain-difference
information that we want to desensitize the calibration model against. However, this desensitizing operation can be
carried out instead by a covariance-based “pre-whitening” operation where the source spectra XS is post-multiplied by a
matrix W such that XPROJ = XSW. This is the stated goal of Generalized Least Squares (GLS) [27]. Unlike TOP which
projects away from span(G), GLS instead shrinks the spectra in directions that are dominated by inter-instrument
variance. GLS first computes the difference between mean-centered matched spectra associated with the source ans target
spectra (denoted as X(MS)

S and X(MS)

T ). The difference spectra is defined as the matrix L = (X(MS)

S − 1µ(MS)

S )− (X(MS)

T − 1µ(MS)

T )
where µ(MS)

T and µ(MS)

S are the mean spectra associated with X(MS)

T and X(MS)

S , respectively. (Again, the domain differences
captured by L may not necessarily include only inter-instrument variation.) We then compute a re-scaled covariance
matrix and rewrite it via its SVD: C = LTL = VΣ2VT. We then replace Σ2 with another diagonal matrix F =

diag(f1, f2, . . . , fp) whose components are defined by fi =
√

γ2/(s2i + γ2), γ > 0. The linear transformation (and
pre-whitening) matrix that we seek is expressed as W = VFVT =

∑p
i=1 fiviv

T
i. The diagonal element 0 ≤ fi < 1

filters (or shrinks) the contribution of the ith loading vector: when γ is small (γ ≪ si), the contribution of vi is
negligible since fi ≈ 0; when γ is large (γ ≫ si), then the contribution of vi is left intact since fi ≈ 1. An excellent
mathematical description of GLS for drift correction can be found in [31].

3.2 Adjust the Model

In the previous section we have reviewed a select set of CTM approaches that aim at compensating for covariate
shift between source and target domain explicitly through some sort of preprocessing of the input data. In what
follows we will briefly review some important approaches from the chemometrics field that implicitly compensate
for domain differences while fitting the response. The approaches outlined in this subsection address covariate shifts

8
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(PS(X) ̸= PT(X)) and/or conditional shifts (PS(Y |X) ̸= PT(Y |X)). In some instances (see Section 3.2.1), target shifts
can also be addressed.

3.2.1 Generalized Tikhonov Regularization

Generalized Tikhonov Regularization (GTR) can accommodate many different types of constraints. The augmented
system of linear equations, and its corresponding least squares minimization problem[

XS

τG

]
b =

[
yS

τh

]
⇔ min

b
||XSb− yS||

2
2 + τ2 ||Gb− h||22 (8)

characterizes the overall framework [54, 55, 56, 57]. Unless indicated otherwise, the source spectra XS and source
reference measurements yS are mean-centered with respect to their source means: XS := XS − 1µx

S and yS := yS − 1µy
S.

The matrix G and vector h may or may not be mean-centered, depending on the context. The penalized least squares
framework of Eq. (8) approximates the following: solve XSb = yS subject to Gb = h. The larger the value of the
non-negative regularization parameter τ , the more important the equality constraint Gb = h is relative to satisfying
the model fit of the source samples. When τ = 0, there is no calibration updating. Historically, the matrix G and the
vector h encode prior knowledge with respect to mathematical and statistical concerns: smoothness, monotonicity or
piecewise linearity. For CTM purposes, however, G and h encode prior knowledge with respect to domain differences.
We will look at many different forms of the matrix-vector pair (G,h), and each form corresponds to a qualitatively
different CTM mechanism.

The most common GTR case occurs when h = 0, and this is also of great interest from the CTM perspective. In this
case, Eq. (8) and its solution can be expressed as[

XS

τG

]
b =

[
yS
0

]
⇔ min

b
||XSb− yS||

2
2 + τ2 ||Gb||22 ⇔ b =

(
XT

SXS + τ2GTG
)−1

XT
SyS. (9)

This framework has many interpretations. Statistically, the presence of the second term τ2bT(GTG)b in Eq.(9) has a
covariate shift interpretation: An acknowledgment that the distributions of the source and target domains are different
(in terms of covariance), and that a correction is required. Geometrically, the corresponding augmented linear system
in Eq.(9) has an oblique projection interpretation: as τ increases, the regression vector b is increasingly becoming
perpendicular to (or being projected away from) the subspace spanned by G. Eq. (9) also states that Gb = 0, i.e. that
b is perpendicular to G. Spectroscopically, this implies that the span(G) is a subspace spanned by spectral interferents
containing no analyte information. Hence, the domain differences embodied by G can be interpreted as spectral
interferents that we want to desensitize the calibration model against.

There is an often-neglected relationship between between GTR and the CTM approaches of Section 3.1 where we
pre-process the spectra via XPROJ = XW before model building. In Eq. (9), if G is invertible, we can transform
Generalized Tikhonov Regularization to Standardized Tikhonov Regularization (STR, or ordinary ridge regression)
[56]:

min
b

||XSb− yS||
2
2 + τ2 ||Gb||22 = min

β

∣∣∣∣(XSG
−1

)
β − yS

∣∣∣∣2
2
+ τ2 ||β||22 where β = Gb. (10)

Note that in Eq. (10), the solution β of the linear system
(
XSG

−1
)
β = yS is being obtained via ridge regression but

other regression techniques such as PLS could be used. If we set W = G−1 where XPROJ = XW = XG−1, then
one performs regression (and make predictions) on spectra that already has been pre-processed (the “beta” space) and
the outcome will be the same as the one obtained by GTR. If xnew is a novel spectrum that has been appropriately
mean-centered, then its prediction ynew will be

STR prediction = ynew = (xnewG
−1)β = (xnewG

−1)(Gb) = xnewb = GTR prediction. (11)

Even if G is not invertible, we can borrow an approach from [58] whereby we replace G with a new penalty matrix
H in Eqs. (9)(10): H = (1 − α)PG + αP⊥

G. The matrix H has the nice property that its inverse is easy to compute:
H−1 = (1 − α)−1PG + α−1P⊥

G. (Recall that PGb = 0 projects b away from span(G) while P⊥
Gb = 0 projects b

toward span(G).) Hence, in the orthogonality constraint Hb = 0 in Eq.(9), as α goes from 0 to 1, the effect is to move
the model vector b toward span(G). For CTM purposes, the value of α should be chosen close to zero, i.e., projecting
b away from the undesirable domain difference information embodied by span(G).

Matched Differences A matched set of samples across the source and target domains (X(MS)

S and X(MS)

T ) has, in principle,
the same reference values across instruments (or measurement conditions). As a result, the set of matched differences
correspond to non-analyte spectra in Eq. (8): G = X(MS)

S − X(MS)

T and h = 0. Spectroscopically, the matrix G now

9
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reflects instrument-to-instrument differences that we want our calibration model to be insensitive to, and in a GTR
context, span(G) geometrically defines an undesirable subspace that we want the model vector b to point away from
[11, 59, 30]. GTR with matched differences in G invokes a covariate shift correction approach in Table 1. Difference
spectra has a long history in CTM applications—see [60, 61, 30] and references therein.

CTM approaches using matched samples can also seemingly look quite different from GTR but are in fact equivalent.
One such approach is the graph regularization scheme proposed by Nikzad-Langerodi and Sobieczky in [38], which
employs a penalty term based upon the Laplacian of a special graph, where only matched samples are connected by an
edge, in order to reduce inter-device variance. This idea can be cast into the GTR framework as follows:

min
b

||XSb− yS||
2
2 + τbTΛb where Λ =

[
X(MS)

S

X(MS)

T

]T [
I −I

−I I

] [
X(MS)

S

X(MS)

T

]
=

[
X(MS)

S

X(MS)

T

]T [
X(MS)

S −X(MS)

T

−X(MS)

S +X(MS)

T

]
(12)

Setting G to be the difference between matched samples, i.e., G = X(MS)

S −X(MS)

T , the matrix Λ can be re-written as:

Λ = (X(MS)

S )TG+ (X(MS)

T )T(−G) = (X(MS)

S −X(MS)

T )TG = GTG. (13)

Hence, the penalty term is the same as the GTR penalty term in Eq. (9), i.e. , τbTLb = τbT(GTG)b = τ ||Gb||22.

First- and Second-Order Moment Differences Matched samples and/or labeled target samples should be used
whenever they are available. However, the acquisition of such samples is often not feasible. For instance, matched
samples are not available for problems where the sample matrix changes between the domains. On the other hand,
acquiring unlabeled target samples that are not matched are in general easier to obtain with respect to expense and time.
Suppose we only have two sets of calibration samples: labeled source samples (XS,yS) and unlabeled target samples
XT, which is all we need to correct for covariate shifts given that XT is a representative sample from the target domain
(see Figure 2A). In this case, two mechanisms that capture domain differences between source and target domain
naturally arise: Differences between first (i.e. means) and second order moments (i.e. covariances).

Simply subtracting the mean source spectrum from the mean target spectrum yields G = µx
T −µx

S and has been used in
[62, 34]. Since the matrix G involves means, the GTR penalty term ||Gb||2 = ||(µx

T − µx
S )b||2 can be considered a

first moment update. Here, one tries to make the calibration model indifferent to domain differences, as characterized
by a single difference spectrum. Such a simple characterization will not likely suffice in capturing meaningful scatter
differences across instruments or conditions. To better accommodate covariate shifts in CTM applications, a penalty
term involving second order moment-differences can be considered and this was first proposed in [40] for PLS type
models. Employing the GTR framework, this amounts to:

min
b

||XSb− yS||
2
2 + τ2 ||Gb||22 where G =

∣∣∣∣CS −CT

∣∣∣∣, CS =
1

nS

XT
SXS and CT =

1

nT

XT
TXT. (14)

To account for first order moment-differences, both XS and XT are locally mean-centered with respect to their own
domain means. It is important to acknowledge that in general, the component-wise covariance difference matrix is
not positive semi-definite and the optimization problem in Eq. (14) thus not convex if G = CT −CT. However, the
symmetry of the covariance difference matrix, which implies orthonormal eigenvectors U = [u1, . . . ,up], can be

exploited to derive a convex restriction of the objective function by letting
∣∣∣∣CS −CT

∣∣∣∣ = U diag(|λ1|, . . . , |λp|)UT with

|λi| being the absolute value of the i-th eigenvalue of the covariance difference matrix [50].

First and/or second order moment-differences can also be combined to create new CTM mechanisms. For example,
in [63, 64], the second-order scatter information from unlabeled target spectra was coupled with first-order moment
differences to yield the following heavily-parameterized linear system:[

XS

τ1G
τ2µdiff

]
b =

[
yS

0
0

]
⇔ min

b
||XSb− yS||

2
2 + τ21 ||Gb||22 + τ22 ||µdiffb||

2
2 ,

G = FVT

µdiff = µx
T − µx

S

(15)

where UΣVT is the SVD of the mean-centered target spectra and F = diag(f1, . . . , fnT), fi =
√
γσ2

i /(σ
2
i + γ),

γ > 0. As with GLS, the particular diagonal element 0 ≤ fi < σi (σi denoting the ith singular value) damps the
contribution of the corresponding loading vector when γ is small; otherwise if large, the contribution is neglible. In this
case, the regularized least squares system is decomposed into three components (or terms): the model misfit of the
labeled source data, the penalty term associated with the scatter matrix of the unlabeled target spectra, and the penalty
term associated with the shift in means between the source and target spectra.

10
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Local Mean-Centering As already stated in section 2.2, labeled samples are usually required in order to account for
conditional shifts since source and target domains have different underlying labeling functions. If one has labeled target
domain samples, then Local Mean-Centering (LMC) is a deceptively simple yet effective CTM technique that has been
studied e.g. in [65, 30, 34]. First, one locally mean-centers the samples such that XS := XS − 1µx

S , yS := yS − 1µy
S,

XT := XT − 1µx
T and yT := yT − 1µy

T. In Eq. (8), we assign G and h to XT and yT, respectively and apply an arbitrary
regression method to [

XS

τXT

]
b =

[
yS

τyT

]
. (16)

Spectroscopically, solving Eq. (16) enlarges the pool of samples by labeled target domain samples, whereby the
unmodeled variance not present in the source samples will be be incorporated into b. Mechanistically, the initial local
mean-centering step separately moves both the source and target centroids to the origin (in both the spectra X and label
Y spaces). Hence, at this stage, we are guaranteed some amount of overlap in the marginal distributions of source
and target domains. The subsequent multiplication by τ in Eq. (16) allows one to better control the amount of domain
overlap in P (X) and P (Y ): when τ > 1 (0 < τ < 1), we enlarge (shrink) the target space to better match that of
the source space. However, from a Procrustes analysis point of view, LMC is incomplete as it invokes translation
and scaling but not rotation in the alignment process, which leads to incomplete alignment of PT(X) to match PS(X).
Nonetheless, LMC remains reasonably effective in that combining source and target samples into a single pool can
(partially) achieve all three types of shifts: covariate, prior and conditional. An even more effective way to account
for covariate and conditional shifts simultaneously is to combine LMC with the ideas from Eq. (14), i.e. augment the
calibration set with labeled target domain samples and control for first and second order moment differences between
source and target domain by means of regularization (see also section 4.1.1).

Generalized Singular Value Decomposition In GTR, When G ̸= I the solution vector of Eq. (9) cannot be
expressed as a linear combination of loading vectors of the source spectra XS alone. However, Generalized Singular
Value Decomposition (GSVD) can be used to express the solution in terms of a shared basis set between XS and G.
There are many forms that the GSVD can take, and they depend upon the dimensions of the matrices XS and G—see
[58] for the common chemometrics case when the number of rows (samples) typically does not exceed the number of
features (wavelengths). As was done in Eq. (10), we replace G with the new penalty matrix H = (1− α)PG + αP⊥

G.
As a consequence, we can now define the GSVD of XS and H:

XS = US[0 ΣS]W̃
−1 and H = UH

[
I 0
0 ΣH

]
W̃−1, W̃ = [W∅ W] (17)

where US and UH are orthonormal matrices of size nS × nS and p × p, respectively; ΣS = diag(σ(1,1), . . . , σ(1,nS))

and ΣH = diag(σ(H,1), . . . , σ(H,nS)) are diagonal matrices of size nS × nS; and W̃ is a p × p invertible matrix (not
necessarily orthogonal) such that W∅ corresponds to the first p − nS columns of W̃ while W corresponds to the
remaining columns. Given this decomposition, Eq. (9) can then be defined (after some algebra) as follows [56]:

b =
(
XT

SXS + τ2GTG
)−1

XT
SyS = WFc =

nS∑
i=1

ficiwi;

F = diag(f1, . . . , fnS), fi =
γ2
i

γ2
i + τ2

, γi =
σ(S,i)

σ(H,i)
; ci =

uT
(S,i) yS

σ(S,i)

(18)

Historically, the values γi = σ(S,i)/σ(H,i) are referred to as the generalized singular values such that γ1 ≤ γ2 ≤ · · · ≤
γnS (which is the reverse of the ordering normally associated with the SVD). From the GSVD perspective, each shared
basis vector wi has a fuzzy membership: the spectral behavior of wi is either predominantly associated or characterized
by XS, G or both. According to [66], if γi ≫ 1 (or σ(S,i) ≫ σ(H,i)), then the basis vector behavior of wi is dominated
by XS; otherwise, if γi ≪ 1 (or σ(S,i) ≪ σ(H,i)), then G dominates wi. When γi ≈ 1, then wi is equally characterized
by both XS and G. Moreover, each diagonal element 0 < fi ≤ 1 in F damps the contribution of wi when the penalty
parameter τ is large. (The basis vectors wi associated with small generalized eigenvectors γi will be disproportionally
damped or filtered relative to basis vectors associated with large generalized eigenvectors.)

With respect to CTM applications, the GSVD has been tangentially used. Recall that in Eq. (15), the matrix G was
set to a second-moment scatter matrix associated with the target spectra XT [63]. Although there was no mention of
GSVD in [63] (nor in [64], the paper which originally introduced the penalized least squares framework of Eq.(15)
and was subsequently extended by [63]), their work has a direct relationship with GSVD: the regression vector b is a
linear combination of loading vectors wi where each loading vector is dominated by either the source spectra (when
γi ≫ 1), the target spectra (when γi ≪ 1) or both (when γi ≈ 1). To emphasize, when G is not associated with
domain difference spectra but instead associated with target spectra, then CTM via GSVD takes on characteristics more
associated with data fusion.
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3.2.2 Domain-invariant partial least squares regression (di-PLS)

The development of di-PLS was strongly inspired by the subspace-based DA methods introduced in Section 3.1.2. The
core idea behind di-PLS is to identify a subspace that is predictive w.r.t. the response in the source domain and where
the distributional difference in terms of first and second order moments (i.e. mean and co-variance) between source and
target domain spectra is small. In fact, di-PLS can be viewed in terms of both, GTR and GE frameworks depending on
the objective function (NIPALS or covariance maximization) one resorts to for deriving the (PLS) weight vector:

min
w

∥X− ywT∥2F + τwTGw ⇒ w =

(
I+

τ

yTy
G

)−1
XTy

yTy
(GTR) (19)

max
w

wTXTy

s.t. wT(G+ δI)w = 1
⇒ XTyyTXw = λ(G+ δI)w (GE) (20)

Similar as in Eq. (14), G =

∣∣∣∣CS − CT

∣∣∣∣ encodes the co-variance difference between the domains. Expanding the

regularization term in Eq. (19) accordingly yields wTGw ≥
∣∣∣∣ 1
nS
w

T
XT

SXSw − 1
nT
wTXT

TXTw

∣∣∣∣ which, in case of locally

mean centered matrices XS and XT, is equivalent to (an upper bound on) the absolute difference between the variance
of source and target domain in the direction w [49]. The GE type formulation in Eq. (20), on the other hand, reveals
that the (domain-invariant) weight vector w is the generalized eigenvector of XTyyTX with respect to (G+ δI) (with δ
being a regularization parameter) that is associated with the largest eigenvalue. Huang et al. recently proposed to replace
G in Eq. (20) with a dedicated Laplacian matrix to account for the distributional differences in a non-parameteric
way (i.e. without the need to estimate source and target covariance matrices), which can be beneficial if data is scarce
and/or the distributional differences are more complicated [67]. Python code for di-PLS is publicly available under
https://github.com/B-Analytics/di-PLS.

4 Applications

In this section, we apply CTM and DA techniques to two spectral datasets from the public-domain involving calibration
transfer between similar instruments and a simulated data set involving a change in sample matrix. The former involve
(mostly) covariate shifts, while the latter deals with conditional shifts.

4.1 Common CTM/DA Approaches Applied to CORN and SOY

Corn Dataset The corn instrument data set consists of eighty NIR spectra measured from three instruments labeled
m5, mp5, and mp6 across 700 wavelengths between the spectral region of 1100 to 2498 nm at 2 nm intervals 2. The
source and target samples are drawn from the m5 and mp6 instruments, respectively; the most dissimilar instruments.
For every sample, four response variables were measured: moisture, oil, protein, and starch. We used protein as the
response variable.

There is no default or designated split of the data into training and test sets. As a result, we created 100 random sample
splits of the data. Each data split is disjoint and partitioned in the following manner.

• Set C: Forty source samples were used as the calibration or training set.
• Set V: A distinct set of thirty-five target samples were set aside and used as the validation or test set.
• Set R: The remaining five samples were used (or not used) as matched samples, labeled samples or unlabeled

samples—depending upon the CTM approach.

The various CTM approaches will now be briefly discussed.

• NONE: No calibration updating was performed. A PLS model was build on C and predictions were made on
V . The five samples in R were not used.

• Piecewise Direct Standardization (PDS): For PDS, the transfer matrix F mapping spectra from mp6 to m5
was constructed using the matched set of five samples from both m5 and mp6 in R.

• Generalized Eigenproblem (GE): The source spectra from C and target spectra (mp6) from R were used to
construct the Laplacian matrix based upon Eq. (4).

• Generalized Eigenproblem in Transudctive mode (GE-T): The source spectra from C and target spectra
(mp6) from both R and V were used to construct the Laplacian matrix based upon Eq. (4). For GE, it is easy
to accommodate unlabeled target samples.

2http://www.eigenvector.com/data/Corn, accessed Jan. 2021
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• Matched Samples (MS): Here, the difference spectra was constructed from the matched set of five samples
from both m5 and mp6 in R. This difference matrix was used as the GTR matrix G in Eq. (9).

• Local Mean centering (LMC): Here, the labeled target samples (both spectra and corresponding reference
values) from R were used as G and h, respectively, in Eq. (16).
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Figure 5: Performance of different CTM approaches on the corn benchmark dataset. The left subplot shows MAPE (%) on the
validation set as a function of the number of PLS latent vectors. The right subplot shows the same information as a heatmap display.
For purposes of de-cluttering the MAPE curves in the left subplot, only a select set of tuning parameters were shown for GE, GE-T,
MS and LMC. In the right subplot, each column indicates the number of latent vectors and each row corresponds to a CTM approach.
Moreover, all tuning parameters are shown in each row of the heatmap (and the corresponding tuning parameters shown as MAPE
curves are highlighted in bold)

.

The Mean Absolute Percentage Error (MAPE, %) was used as the figure of merit:

MAPE =
1

|V|
∑
i∈V

∣∣∣∣yi − ŷi
yi

∣∣∣∣ 100% (21)

Across the 100 data splits, the average MAPE on the validation set is reported in Figure 5 as a function of the number
of latent PLS vectors. In the right subplot, the same information is displayed as a heatmap. (All MAPE values or cells
above 5.2 are magenta in color.) Each column indicates the number of latent vectors and each row corresponds to a CTM
approach. For purposes of de-cluttering the MAPE curves in the left subplot, only a select set of tuning parameters are
shown for GE, GE-T, MS and LMC. On the other hand, all tuning parameters are shown in each row of the heatmap (and
the corresponding tuning parameters shown as MAPE curves are highlighted in bold). For PDS, the best performace
was achieved with a window width of 1. Other window widths were employed but are not shown since they yielded
inferior results. For both GE and GE-T, we examined the effect of keeping the first k (and dominant) eigenvectors of W
such that k ∈ {5, 10, 15, 20, 25, 30}. For MS and LMC, the τ values (the two-norm penalty associated with GTR) were
used such that τ1 < τ2 < · · · < τ10 and are exponentially decaying to zero.

There are a couple of trends to note in Figure 5. First, having access either to labeled target samples (LMC) or matched
samples (MS) clearly results in superior performance. However, LMC performance can be deemed superior since
performance (as displayed in the heatmap) is relatively insensitive to the two-norm penalty parameter τ . If one does
not have access to labeled target samples, then having matched samples to work with is the next best alternative. The
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generalized eigenproblem approach varies in performance—depending upon whether the unlabeled spectra in R alone
(GE) or whether an unlabeled set of spectra is used as well (transductive mode, or GE-T) to construct the Laplacian
matrix in Eq. (4). Having access to more unlabeled spectra is always preferable to less, and here, GE-T can outperform
PDS provided one uses a large enough set of eigenvectors. Incorporating unlabeled spectra from the test set into the
modeling updating procedure is not a far-fetched idea in chemometrics. For example, unlabeled spectra acquired from
an instrument in the field—if the instrument is tethered to a phone such that spectral data can be quickly uploaded to
computational cloud services—can make transductive inference more readily accessible.

The superior performance of LMC is likely due to it being the only CTM method to have access to labeled target
samples. That is, in the prediction of the new sample, the target means are used: ynew = (xnew −µx

T)b+ µy
T. However,

GTR based on matched samples perform equally well or even better (depending on the choice of the regularization
parameter), which indicates that the instrument differences are (mostly) characterized by covariate shift. Consequently,
reference measurements from the target domain samples are not necessarily required for model maintenance. If one
only has access to matched samples, then model updating via MS has a performance edge over PDS, especially if one
chooses a large two-norm penalty parameter (a large two-norm parameter was also observed to be beneficial in the
MS scenario described in [38]). But the reality is that having access to labeled target samples and/or matched samples
is a calibration luxury in many practical applications and use-case scenarios. In the absence of such samples, then
meaningfully using unlabeled target samples is still relatively unexplored territory but warrants further investigation.

4.1.1 Covariate vs conditional shifts

We will proceed by showcasing the application of DA on a simulated spectral dataset, where the goal is to adapt a
multivariate calibration model from a source to a target domain (Figure 6). The source domain consists of two Gaussians
centered around µ = 50 (analyte) and µ = 65 (interferrent 1) added together in different proportions (including some
random noise), while in the target domain an additional interferrent centered around µ = 35 (interferrent 2) has been
added in different amounts. The distribution of the analyte concentration (i.e. P (Y )) remains unchanged between the
domains, i.e. there is no prior shift. Obviously, it holds that PS(X) ̸= PT(X), i.e. there must be a covariate shift between
the domains since interferent 2 changes the convariance structure of the data. In addition, the difference between the
domains also involves a conditional shift, i.e. it holds that PS(Y |X) ̸= PT (Y |X), because the second interferrent
overlaps significantly with the analyte and thus changes the correlation between predictors and response - at least around
the "absorbance" peak of the interferrent. As we will see later, the severity of the conditional shift is directly associated
with the amount of this overlap. We will start by correcting for the covariate shift, which requires (in addition to the
source domain data including the analyte concentrations) only a (representative) set of spectra from the target domain
without the corresponding reference measurements. This is the typical setting in unsupervised domain adaptation which
can be accomplished either by the generalized Eigendecomposition type methods from section 3.1.2 (e.g. TCA), GTR
approaches (e.g. Eq. (14)) or di-PLS (Figure 6C). All these methods involve a tuning parameter that controls how much
emphasis should be given to correct for the covariate shift. This however is a non-trivial task when there are no reference
values in the target domain to validate the model. An approach that has been applied with success in the past is to
plot the distributional difference between the domains (in the LV space) against increasing values of the regularization
parameter and choose the value where this curve is closest to the origin (Figure 6D). This can be done globally or for
each LV individually [40]. A simpler (yet less flexible) alternative is to optimize the distributional difference between
yS and ŷT , i.e. to choose the regularization parameter such that the distribution of the predictions on the (unlabeled)
target domain samples better matches the distribution of the reference values in the source domain. In parallel, either
the weight, the loadings or the regression coefficients should be inspected. If too much emphasis is placed on aligning
the distributions, the risk of aligning the noise rather than the (predictive) information increases which manifests itself
in these quantities (Figure 6E). At the same time it is also advisable to check how regularization affects the source error
as there is a trade-off between fitting the response (in the source domain) and aligning the distributions. Unfortunately,
di-PLS tends to shrink the variance of the predictors (i.e. the scores) and domain regularization thus often leads to lower
errors in the source domain compared to standard PLS when the number of LVs is small [68].

An appealing feature of the GTR type methods and di-PLS is that the models can accommodate (a small fraction of)
labeled target domain samples along with (a larger fraction of) unlabeled target domain samples in order to correct for
both covariate and conditional shifts. Figure 6F shows the RMSEP of di-PLS models in the target domain in dependence
of the number of reference measurements available in the target domain and the distance ∆ between the target domain-
specific interferrent’s and the analyte’s peak (indicated in Figure 6B). If this distance is large, the difference between
the domains involves predominantly covariate shift and thus the RMSEP does not improve significantly when including
label information for (some of the) target domain spectra. However, for small ∆’s the conditional shift becomes more
severe and the RMSEP can thus only be improved by including labeled target domain samples.
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Although quite simplistic, the above example is useful to emphasize the (potential) benefit (i.e. model adaptation
with unlabeled data), challenges (how to select and optimize a model when labels/reference values are scarce or not
available?) and open questions (when is DA feasible?) with domain adaptation.

Figure 6: Application of di-PLS for domain adaptation. Simulated source (A) and target (B) domain datasets. Solid
and dotted lines indicate the peaks, where analyte and interferrents have maximal signals. ∆ indicates the difference
between analyte and target domain-specific interferrent peak. (C) Measured vs. predicted analyte concentration in
the target domain from a PLS model fitted to the source domain data only (red) and a di-PLS model fitted to labeled
source and unlabeled target domain data. (D) Domain discrepancy vs. amount of regularization. The inset plots show
projections of source (blue) and target (red) domain data together with the 95%-CI along the first 2 LVs of a di-PLS
model at the three points indicated in the figure. (E) Regression coefficients of the source PLS model and di-PLS models
at optimal regularization and when regularization is too strong (middle and rightmost points in D). (F) Dependence
of root mean squared error of prediction (RMSEP) on the number of reference measurements available for the target
domain samples and distance ∆ between analyte and target domain-specific interferrent peak. Blue and yellow regions
indicate low and high RMSEPs, respectively.

5 Perspectives

The previous section has shown that DA – if applied with the concepts from section 2 in mind – can be highly useful
when it comes to adapting multivariate calibrations between related domains. DA and recent methods developed in
the field of chemometrics (e.g. di-PLS) hold promise to help solving such types of real-world problems in analytical
chemistry. Moreover, those DA methods that do not require, or at least reduce the need for, costly and time consuming
laboratory analyses of reference samples are of particular interest. However, there is an inherent tension when using
unsupervised DA (no reference measurements available in the target domain). Theory shows that even for simple
covariate shifts, unsupervised DA of the source model to the target domain can (in principle) fail [7]. On the other hand,
unsupervised DA models might generalize sufficiently well across two (or more) domains despite conditional shift.
In the example shown in Figure 6 the ability of the model to generalize to the target domain can be attributed to the
presence of enough selective information about the analyte in both domains. In short, knowledge about the distributional
characteristics of the domain differences (i.e. covariate/conditional/prior shift) is not sufficient. Knowledge about
information associated with the analyte and interferents is also imperative to develop a model adaptation strategy.
Regardless of the algorithmic approaches at one’s disposal, a more fundamental question has to be asked: Is DA even
feasible at all, and if so, are reference measurements required in the target domain? Unfortunately, measures or figures
of merit that assess the feasibility of DA in a given practical situation are as yet largely missing in the chemometric
literature. Thus, future work should focus on the development of such measures.
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Figure 7: Data integration interpretation of di-PLS. Schematic drawing of di-PLS regression of YS on XS such that the
distributional difference d(TS ,TT ) between the projections of XS (source domain) and XT (target domain) are not
larger then some pre-defined λ. Note that source and target domain matrices have domain-specific scores and loadings
matrices P and T but share a single weight matrix W. When YT is not available, di-PLS addresses the unsupervised
domain adaptation problem.

5.1 Data Integration and Fusion

Similar to the DA methods discussed in Section 3, the aim of data integration/fusion methods is to identify common,
latent phenomena in related data sets [69]. In fact, data integration methods have been successfully employed in the
past for calibration transfer, i.e. to transfer calibrations between similar spectrometers [70] and domain adaptation [63].
On the other hand, some of the DA methods discussed in section 3 can be regarded as striving for data integration. In
Section 3.2.1, GTR, when viewed through the prism of GSVD, creates a common basis set that spans both the source
and target domains. With respect to di-PLS, Figure 7 shows a simplified LV model scheme where the goal is to regress
the response to the predictors in a source domain under the constraint that the distributional difference between the
domain-specific latent representations (i.e. the scores) is small.

The differences between source and target samples follow a continuum between dissimilarity and similarity. If the
source and target samples are highly similar (i.e., are drawn from the same underlying distribution and share the same
sources of variation), then a source model will likely perform well in the target domain. If the target samples are
radically dissimilar from the source samples, then one can ignore the source samples and build a calibration model
solely on the target samples (provided there are enough samples). Many settings in chemometrics are intermediate
between these two extremes: although we expect the target samples to be dissimilar (but related) to the source samples,
the source samples should still provide leverage such that improved prediction can be achieved for target samples.
However, how do we quantify how much common information is present across domains in this continuum? And is
this common information predictive with respect to the response? Recent work has made a preliminary attempt at this
issue for domain adaptation situations [71]. Regarding the feasibility of unsupervised DA, another relevant question
is the following: Under which (practical) conditions is a "common" representation of the domains (in a data fusion
sense) invariant with respect to their distributional properties (e.g. mean, co-variance etc.) or vice versa. After all,
generalization across the source and target domain statistically implies that the samples were at least sampled from a
common underlying distribution. Moreover, one further assumes that the common (latent) information is also predictive
with respect to the response. In our opinion, future work should focus on sheding light on the relationship between the
concepts of common and domain-invariant LVs.

5.2 Transfer Learning

As already stated in the introduction, most lines of work in chemometrics have thus far addressed domain adaptation
rather than transfer learning. The main difference between DA and TL is that in the latter, data from related domains
is leveraged to learn a new task instead of learning the same task in a new domain. In some computer vision
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Figure 8: Deep transfer learning on ATR-FTIR spectra of dried plant leafs. Left plot: t-SNE embeddings of the
activations from the last hidden layer of a fully connected deep neural network with 4 hidden layers trained on a dataset
containing spectra from 30 distinct plant families (unpublished work). Right plot: Projections of samples from 5 species
(not included during training) on the first two principle components fitted to the hidden activations from the training
data.

problems, TL is possible because some high-level features (e.g. wheels) extracted while learning a task in one domain
(e.g. discrimination between trucks and cars) can help learning a semantically related task in another domain (e.g.
discrimination between motorbikes and bicycles). It is reasonable to assume that such high-level features can also be
derived by means of deep learning approaches, e.g., from NIR spectra reflecting general classes of vibrational modes that
characterize similar kinds of molecules. However, in contrast to computer vision problems, where individual objects can
usually be spatially isolated from each other and the background, in spectroscopy, the signals from individual molecules
often overlap heavily with the background signal from the sample matrix. In addition, TL in computer vision and related
domains is employed predominantly for classification tasks, while most applications in chemometrics involve regression
problems and deal with quantitative analysis of molecules. While DL has been successfully employed for multivariate
calibration and domain adaptation in chemometrics with the type of models usually employed in computer vision (e.g.
convolutional neural networks) [72], true transfer learning with spectroscopic data will require large compilations of
datasets to learn domain-specific feature representations for data from a particular analytical platform (e.g. NIR or MIR
spectroscopy). Figure 8 exemplifies this idea of transfer learning using a dataset of ATR-FTIR spectra of dried plant
leaf surfaces from 30 distinct plant families (unpublished work) [73, 74]. The left plot shows non-linear t-SNE [75]
embeddings (i.e. projections) of the activations (i.e. the scores) of the last hidden layer from a fully connected deep
neuronal network fitted to a subset of this dataset. As can be seen from this plot, most of the data points belonging to
the same plant family are close to each other indicating that the hidden layers encode discriminating features between
the classes. The right plot shows projections of some plant species (that were not included during training of the DNN)
onto the first two principle components of a PCA model fitted to the same hidden activations. This is to show that the
same features that are useful to discriminate between plant families (i.e. the source task) turn out to be useful (to some
extent) for the discrimination between different genera from different plant families (e.g. H. niger and V. officinalis),
different genera from the same family (A. belladonna and H. niger, both Solanaceae) and between different species
from the same genus (R. ferrugineum and R. hirsutum). Just like a botanical novice, the initial DNN first learns the
features that characterize different plant families. Some of this knowledge might help right away to distinguish plants
from different genera of the same family. However, further training might be necessary in order to tell closely related
species apart safely.

6 Conclusion

The primary aim of this contribution was to give the average reader with a background in chemometrics a "gentle
primer" on the subject of transfer learning and domain adaptation and to offer an alternative perspective on some of
the methods that chemometricians have developed over the past decades. We hope that our contribution will help
practitioners to tackle real-world problems in analytical chemistry involving calibration maintenance and transfer more
efficiently and foster new developments in chemometrics and analytical chemistry.
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