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Impact of standardization sample design on
Tikhonov regularization variants for
spectroscopic calibration maintenance and
transfer
Matthew R. Kunza, Joshua Ottawaya, John H. Kalivasa* and Erik Andriesb,c

Multivariate spectroscopic calibration models are only valid to predict samples within the span of the calibration
sample space measured relative to the current instrument environment (the primary conditions). Predicting samples
in secondary conditions with new variances, same sample variances as the calibration space but a new instrument
environment, or both, requires some form of continual model maintenance and/or transfer. Previous work has shown
that a Tikhonov regularization (TR) approach is capable of accomplishing both tasks by updating the primary model
based on only a few samples (transfer or standardization set) measured under the secondary conditions. A distinction
of the TR design for calibration maintenance and transfer is a defined weighting scheme for the small set of
standardization samples augmented to the full set of primary calibration samples. Critical to successful calibration
maintenance or transfer is the standardization sample set composition, i.e. standardization samples should properly
represent that are less secondary conditions. This paper reports on using TR-based methods to investigate this issue
and a consensus modeling approach is briefly evaluated. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Once a multivariate calibration model has been determined for a
set of primary conditions, the applicability of the model over time
becomes relevant. Primary conditions are the span of calibration
samples (calibration space) and the span of instrumental
conditions (wavelength accuracy, photometric response, band-
widths, etc.) and environmental conditions under which
calibration samples are measured. Approaches are needed to
maintain the primary model to predict under new chemical,
physical, environmental, and/or instrumental effects (secondary
conditions) not spanned in the primary calibration domain.
Associated with calibration maintenance is the calibration
transfer problem. In this case, the interest is using a calibration
model developed on a primary instrument to predict sample
compositions from spectra measured on a secondary instru-
ment(s). The secondary instrument can be the primary instru-
ment at a new point in time.
Calibration maintenance and transfer have been subjects of

numerous studies and are well reviewed [1–5]. Three general
approaches are possible. One consists of forming a robust
primary model usually accomplished by using spectral pretreat-
ment methods such as multiplicative scatter correction, finite
impulse response filter, derivatives and/or wavelength selection.
Another method to form a robust model is to globally calibrate by
including all potential chemical, physical, environmental and/or
instrumental variances in the original model through measuring
spectra under all possible future conditions. However, a difficulty
with this approach is the large number of samples needed to
span all potential future variances and the corresponding analyte

reference value must be determined for each sample. Obtaining
reference values is usually time consuming and costly.
A second approach to calibration maintenance and transfer is

adjusting sample spectra measured in the secondary condition or
on a secondary instrument to fit the primary calibration model.
Usually a small set of samples (standardization set) must be
measured in the primary condition at the same time calibration
samples are measured. The standardization samples must also be
available for measuring in future secondary conditions. Correc-
tion terms are determined that transform standardization sample
spectra measured in the secondary condition to appear as if the
spectra were measured in the primary condition. New samples
are then transformed with the correction terms and predicted by
the primary calibration model. This approach to calibration
maintenance and transfer is limited to conditions that alter
spectra (wavelength shifts, intensity changes and/or baseline

(www.interscience.wiley.com) DOI: 10.1002/cem.1302

Special Issue Article

* Correspondence to: J. H. Kalivas, Department of Chemistry, Idaho State
University, Pocatello, ID 83209, USA.
E-mail: kalijohn@isu.edu

a M. R. Kunz, J. Ottaway, J. H. Kalivas

Department of Chemistry, Idaho State University, Pocatello, ID 83209, USA

b E. Andries

Department of Mathematics, Central New Mexico Community College,

Albuquerque, NM 87106, USA

c E. Andries

Center for Advanced Research Computing, University of New Mexico,

Albuquerque, NM 87106, USA

J. Chemometrics 2010; 24: 218–229 Copyright � 2010 John Wiley & Sons, Ltd.

2
1
8



offsets) and are not applicable when new variances arise such as
new spectrally responding species or the analyte concentration
in a new sample is outside the primary condition concentration
range. As noted, limiting this spectral transformation method is
the need to have a stable standardization set in order for the
same samples to be measured under primary and secondary
conditions. A recent variation of orthogonal preprocessing in
conjunction with spectral transformation is dynamic orthogonal
projection where a few samples are measured in the secondary
condition and using kernel functions, these spectra are modified
to appear as if they were measured in the primary condition [6].
Spectral differences between the actual secondary samples and
the same samples estimated as primary spectra are then used in
the orthogonal preprocessing. With this approach, measurement
in the primary condition is not required eliminating the need for
standardization set stability.
A third general approach, and the focus of this paper, is to

update (rebuild) the primary calibration model to properly
predict sample spectra measured in a secondary condition or on
a new instrument. Model updating is not only useful for situations
requiring spectral adjustments, but it is also useful when the
primary calibration fails due to uncalibrated spectral features
appearing in new samples such as the analyte concentration
being lower or higher than primary calibration concentrations or
when new spectral responding chemical constituents appear.
Depending on the instrument and sample type, other chemical,
physical and environmental influences can cause new spectral
features to appear. These include changes in viscosity, particle
size, surface texture and pH.
Approaches to updating the primary model are varied [7–23].

The methods studied in this paper are three variants of
Tikhonov regularization (TR) [24,25] used for calibration
maintenance and transfer [26,27]. One of the TR variations is
restricted to vector 2-norm minimizations [26] and the other
two new adaptations of TR were recently developed to include
1-norm vector minimizations [27]. Results can improve with the
1-norm compared to those reported for TR in 2-norm. Basically,
a small set of samples measured in the new secondary
condition or instrument is augmented to the larger primary
calibration sample set and optimally weighted to form a model
desensitized to the new condition or instrument. Critical to
forming a good model is the composition of the standardiz-
ation samples measured in the secondary condition to
augment the primary calibration samples. This paper reports
on a study investigating the impact of the standardization
sample set composition for the three forms of TR.

2. STANDARDIZATION SAMPLES

A problem with the method of transforming spectra measured in
a secondary condition to the primary condition is that the small
sample subset (standardization set) must be measured in both
primary and secondary conditions and, most importantly,
measured in the primary condition when the primary calibration
samples were measured. Selecting the standardization set from a
large number of primary calibration samples and then measuring
these same samples under the secondary condition avoids the
problem of going back and measuring any new standardization
samples under the original primary condition which may no
longer exist. However, these standardization samples need to be
stable over time. Alternatives to selecting a standardization set

include generic reference standards, sealed reference standards
and glass standards [28–35]. Generally, it has been found that the
more the standardization samples resemble new prediction
samples (more prediction sample-like), the better the quality
of the transformation process [29–33]. This observation is
dependent on the sources of difference between primary and
secondary conditions.
When a model is updated, as with TR, the standardization

sample set only needs to be measured in the new secondary
condition. If these standardization samples are actual samples
and not some kind of reference sample such as a sealed ampoule,
then by default, the standardization samples are prediction
sample-like. Analyte reference values are still needed for these
updating samples.
If a large number of samples are available in the secondary

condition, the standardization set can be selected from these
samples using the Kennard Stone algorithm (a commonly used
algorithm where the goal is to select samples spanning the
respective space) [36]. In this case, the standardization set should
be representative of the new condition. However, the actual
method used to select a standardization sample subset can affect
the calibration transfer quality and, hence, prediction in the new
conditions [11,37]. For example, the transformation quality of the
piecewise direct standardization (PDS) algorithm was found to be
sensitive to the method of subset selection, while prediction
augmented classical least squares/partial least squares (PACLS/
PLS) was not [37]. It may be that a consensus (bagging, ensemble,
fusion, stacking) model approach [38–43] would provide a better
updated model compared to updating a model with one subset,
i.e., multiple updated models are formed with different
standardization sets and some form of composite prediction is
reported from the models deemed acceptable.
The luxury of having a large sample set measured in the

secondary conditions to select from is usually not available and
hence, the need for model updating procedures robust to the
standardization set composition. Two examples of when a
large set of samples in the secondary condition is not available
are when only the first few samples of a new grade or batch are
available or an existing primary model is needed to predict
samples in a new growing region of an agriculture product that is
geographically specific.
Evaluated in this paper are two promising variations of TR that

include 1-norm minimization to ascertain if standardization
sample set structure requirements can be relaxed and hence,
more applicable to situations when a large set of samples
measured in secondary conditions is not available. Because the
evaluation is based on randomly selected standardization
samples, also assessed is a consensus modeling approach with
the multiple random standardization samples.

3. TIKHONOV REGULARIZATION
MODIFICATIONS

Multivariate calibration for a primary condition involves relating
the dependent variable such as a chemical or physical property to
independent variables such as spectroscopic measurements by

y ¼ Xbþ e (1)

where y denotes an m� 1 vector of quantitative values of the
analyte for m calibration samples, X symbolizes the m� n
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calibration matrix of n predictor variables and b represents
the n� 1 vector of calibration model coefficients that must
be estimated. The m� 1 vector e indicates normally distributed
errors with mean zero and covariance matrix s2I. Without
loss of generality, it is assumed that all data are mean
centered. For this paper, y contains analyte concentration
information, X contains spectra measured over n wavelengths
or frequencies and n>>m. The goal in the primary calibration is
to determine an appropriate estimate of b (b̂) in order to predict
with the best accuracy (minimum bias) and precision (minimum
variance) the amount of calibrated analyte present in a future
sample x using ŷ ¼ xtb̂ [44,45]. Methods such as ridge regression
and PLS are commonly used and when n�m, multiple linear
regression can also be used.
At some point in time, some form of calibration maintenance

and/or transfer is needed. In the case of model updating, the
objective is to augment the primary calibration X and y with only
a few standardization samples containing the new variance and
weighted by l . In this case, Equation (1) is written as (ignoring the
e term)

y
lyL

� �
¼ X

lL

� �
b (2)

where L represents an l� n matrix of spectra measured for l
samples in the new condition or on the secondary instrument
and yL denotes respective concentrations.
Using the regression methods of PLS or principal component

regression (PCR) to estimate b in Equation (2) requires
determination of respective meta-parameters for the number
of basis vectors (latent vectors, factors) and the weight value.
Selection of a weight value in past work has been based on
replication of samples in the standardization set [11,17]. For
example, if l¼ 1, then no replication of the standardization set is
used, if l¼ 2 then duplicates are augmented, etc. This approach
has not always proved satisfactory. Recent work applied a
method developed for TR based on the L-curve to determine
acceptable PLS meta-parameters [26]. Presented in this paper is a
different approach incorporating the L-curve to select meta-
parameters. The Results and Discussion section describes the
L-curves.

3.1. TR in 2-norm

An alternative to using PLS or another method to solve Equation
(2) is to apply an algorithm to Equation (2) that satisfies

min Xb� yk k22þl2 Lb� yLk k22
� �

(3)

where kkp signifies the vector p-norm, e.g. p¼ 2 is the 2-norm or
Euclidean norm in Expression (3). This expression represents a TR
variation [26]. The desired model vector in Equation (2) and
Expression (3) needs to be as orthogonal as possible to
non-analyte information in X as well as orthogonal to new
chemical, physical, environmental and/or instrumental con-
ditions characterized in L. In this way, the model is desensitized
to the interfering spectral artifacts. The goal is to try and do this
with as few spectra as possible in L.
It is not necessary to have standardization samples with the

analyte present, e.g. matrix matched blanks, solvent, background,
drift pseudo-spectra, or pure component spectra of new artifacts.
In this case, yL¼ 0. Similarly, key eigenvectors from the singular
value decomposition (SVD) of Lwith samples containing constant

or no analyte, such as spectra from repeatedly measuring the
spectrum of a single sample [15,16], could be used for L with
yL¼ 0.
It should be noted that while solution of Equation (2) by PLS

or PCR requires two meta-parameters, so does the TR form of
Equation (2) and Expression (3) which must be modified to

y
0
lyL

0
@

1
A ¼

X
aI
lL

0
@

1
Ab (4)

and

min Xb� yk k22þa2 bk k22þl2 Lb� yLk k22
� �

(5)

in order to provide stable solutions [26]. In Equation (4) and
Expression (5), I denotes the identity matrix. The first two terms in
Expression (5) formulate ridge regression and thus Expression (5)
can be considered ridge regression with updating. Using
Expression (5) will be henceforth termed TR in 2-norm or
equivalently 2-norm TR.

3.2. TR in 1-norm

TR in Expression (3) can be modified to

min Xb� yk k22þt Eb� yEk k11
� �

(6)

where E represents a matrix that can be the standardization
set spectra (E¼ L) and in this case, yE¼ yL, the 1 indicates
the vector 1-norm and t symbolizes the penalty meta-parameter
on the model vector 1-norm. Using the 1-norm under certain
conditions (E¼ I or a diagonal matrix) causes wavelengths
to be simultaneously selected as the model forms and
hence, a sparse solution is obtained. When E is rectangular,
then such a sparse solution is not guaranteed. The special case of
TR in Expression (6) with E¼ I and yE¼ 0 is more commonly
known as the least absolute shrinkage and selection operator
(LASSO) [45–48]. A version known as the adaptive LASSO results
when E is a diagonal array and yE is the zero vector [45,49]. The
purpose of setting E to a diagonal array is to weight model
coefficients by using a priori information such as a regression
vector previously obtained by PLS. Such an approach was
recently studied [50] and was found to provide improved
predictions.
When E contains spectra for calibration maintenance

and transfer, it is necessary to add a second regularizing
meta-parameter a to Expression (6) [27]. This alters Expression (6)
to

min Xb� yk k22þa2 bk k22þt Eb� yEk k11
� �

(7)

As with Expression (5), the first two terms in Expression (7)
formulate ridge regression except now the model updating is
with a 1-norm penalty instead of the 2-norm penalty. The
minimization expressed in Expression (7) is studied in this paper
using random standardization samples for E. Because E is not
diagonal, then a sparse solution is not guaranteed as shown in
Reference [27] that also describes the algorithm. Hereafter, using
Expression (7) shall be termed TR in 1-norm or equivalently,
1-norm TR.
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3.3. TR in 2-/1-norm

The TR variants in Expressions (3) and (6) can be combined to
form

min Xb� yk k22þl2 Lb� yLk k22þt Eb� yEk k11
� �

(8)

Note that Expression (7) with L¼ I and yL¼ 0 is a special case
of Expression (8). A modification of Expression (8) used in the
previous work for calibration maintenance and transfer [27] and
used in this paper is with E¼ I and yE¼ 0 giving

min Xb� yk k22þl2 Lb� yLk k22þt bk k11
� �

(9)

In this 1-norm situation, a sparse solution is guaranteed.
Henceforth, Expression (9) shall be referred to as TR in 2-/1-norm
or, equivalently, 2-/1-norm TR.
Another modification to Expression (8) that is similar to

Expression (9) is known as the elastic net [45,51] where L¼ E¼ I
and yL¼yE¼ 0 in Expression (8). Not studied to date is
Expression (8) as a third meta-parameter, such as a, would
probably be needed.

3.4. Previous TR calibration and transfer work

Using Expression (9) for calibration maintenance and transfer
with a Kennard Stone selection of the standardization set
provided improved predictions for the secondary and primary
conditions compared to using TR in Expression (5) where no
wavelengths are selected [26,27]. Previous work also evaluated
Expression (7) for calibration maintenance and transfer, and
improved results were also obtained compared to results from
Expression (5) [27]. Presented in this paper are results from a
study using Expressions (5), (7) and (9) for calibration
maintenance and transfer to ascertain if the 1-norm improves
the ability of TR to be less sensitive to the composition of L and E
and hence, more applicable to those situations when the user
does not have the luxury to select the standardization subset for L
and E from a larger preexisting set where the Kennard Stone
approach could be used to ensure an L and E representative of
the secondary condition.

4. CONSENSUS MODELING

If a large number of samples have been measured in the
secondary conditions, then there exists the flexibility of selecting
standardization samples with an algorithm such as the Kennard
Stone. Alternatively, the process of randomly selecting standard-
ization samples followed by forming the respective updated
model could be repeated to form numerous models. Each new
sample would be predicted with the collection of models and a
composite (fused) prediction would be formed. Such approaches
are known as consensus or ensemble modeling. This is different
from that performed in Reference [52] where multiple models
were formed and each was tested for ruggedness using artificial
spectral perturbations and the most rugged model was selected
as best for predicting future samples.
The usual format to form multiple models is by random

sampling across samples (bagging), variables (random subspace
method) or both [53–55]. Once a set of models is formed, filtering
for model quality is needed. To effectively leverage consensus
modeling, a high degree of prediction accuracy is needed in

conjunction with small but significant divergences between
models (model diversity), i.e. there are no gains from consensus
modeling if all the models are similar (same model vector b̂) and
hence, give the same prediction [56,57]. The gain comes when
individual models are different and hence, provide different but
accurate predictions. Reference [58] describes a study onwhether
it is best to combine model predictions or select one model for
the sample prediction. Based on the prediction combination
process and model selection criterion, it was found that
combining predictions from different models is not necessarily
the most accurate prediction, but that it is less risky to combine
predictions than to select one model for the prediction.
In recent work it was shown that indeed, for a given data set,

different regression vectors can produce acceptable predictions
and hence, interpretations of regression vector shape in terms of
good or bad (model validation) are difficult if not impossible [59].
A distancemeasure has been developed tomeasure the similarity
and diversity of models thereby providing amechanism to cluster
similar models [60].
Various methods exist to form the composite prediction from

the acceptable models including weighted linear combinations,
majority vote and fuzzy logic. In Reference [61], the final
prediction is a weighted mean of the predictions where weights
are determined by prediction errors of neighborhood samples.
Neighborhood samples are those similar to the new sample
where similarity can be spectroscopic similarity. Based on
prediction errors of neighborhood samples, a final prediction
correction error is made to the new sample. Alternatively, an
average of true reference values for neighborhood samples
can be used as the predicted value of the new sample. Such an
approach is part of the comparison analysis using restructured
near infrared and constituent data-deux (CARNAC-D) method
[62]. The simple approach of using the mean predictions from all
models without any determination of predictability of themodels
is used in this paper.

5. EXPERIMENTAL

5.1. Software

MatLab 7 (The MathWorks, Natick, MA) programs for 2-norm TR
were written by the authors and 1-norm and 2-/1-norm TRs are
that previously described [27]. The 1-norm and 2-/1-norm TR
algorithms are based on the least angle regression (LAR)
algorithm [45,63] and the reader is referred to References [27]
and [50] for details.

5.2. Data centering

Matrices X, y, L, E, yL and yE are mean centered to respective
means. This local centering approach has been shown to provide
improved modeling performance [64,65]. Validation samples
measured under the same conditions as L or E are centered to the
mean of L or E prior to prediction.

5.3. Data sets

5.3.1. Temperature

Twenty-two samples composed of water, ethanol and 2-propanol
were measured from 590 to 1091 nm at 1 nm intervals at 30, 40,
50, 60 and 708C [66]. Spectra from 850 to 1049 nm were used.
Temperature-specific calibration and validation sets described in
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Reference [66] were used to form the same respective 13 and 6
sample sets (pure component samples are excluded). Results are
presented for primary calibration at 308C for ethanol to predict
ethanol at 708C. In a separate study to exemplify the new process
of determining meta-parameters a and l in Expression (5), the
same temperature conditions as used in Reference [26] were used
here, namely primary calibration at 308C for ethanol to predict
ethanol at 508C.

5.3.2. Corn

Eighty samples of corn were measured from 1100 to 2498 nm at
2 nm intervals on three near infrared (NIR) spectrometers
designated as m5, mp5 and mp6 [67]. Reference values are
provided for oil, protein, starch and moisture content and protein
is the prediction property studied in this paper. For this study,
every other wavelength was used for a total of 350 wavelengths.
Thirty samples were selected from the 80 samples measured on
instrument m5 for the primary calibration set using the Kennard
Stone algorithm selecting the first sample closest to the mean
and successive samples are furthest from this sample. The
validation samples are the remaining samples but measured on
instrument mp5.

5.3.3. Standardization set

For both data sets, one of the nine sample standardization sets
studied is that determined by Kennard Stone algorithm. For the
temperature data, this consisted of selecting four samples by
applying the Kennard Stone algorithm to the 13 sample
calibration set at 308C, but measured at 708C. For the corn data
set, the standardization set consists of four samples selected from
the same 30 calibration samples but measured on instrument
mp5. Eight other randomly selected standardization sample sets
with four samples were used. For the two data sets, this consisted
selecting four samples from the respective calibration sample
number but measured in the secondary conditions. The same
sets of random four samples were used for TR in Expressions (5),
(7) and (9), i.e. L¼ E. In other work [26,27], four samples were
found to be adequate for the temperature and corn data sets.

5.3.4. Model evaluation

Model evaluation criteria tabulated in Tables include the root
mean square error of validation (RMSEV), R2, and the 2- and
1-norms of the model vectors. Reported for the all nine models
formed on each data set using each of the three methods are
respective means, standard deviations and relative standard
deviation as a per cent (RSD).

6. RESULTS AND DISCUSSION

This paper investigates nine spectral situations for the standard-
ization set in L or E. One consists of spectra of samples selected
by the Kennard Stone algorithm and the other eight are randomly
selected. These nine standardization sets are used to compare
the subset composition impact on TR in 2-norm, 1-norm and 2-/
1-norm.
Final TR models for Expressions (5), (7) and (9) are based on two

meta-parameters. The t parameter for TR in 1-norm and 2-/
1-norm are used to penalize the 1-norm prediction error of the
standardization set or guide wavelength selection, respectively.

Note that the LAR algorithm used in 1-norm and 2-/1-norm does
not directly use a t value. Instead, each iteration corresponds to a
non-zero model vector coefficient in b being added or removed
from the model vector in the previous iteration. The value t¼ 0
forms the classical least-squares solution (model vector in the last
iteration of the LAR algorithm). In this paper, the LAR algorithm is
used to solve Expressions (7) and (9) with the modification that
the columns of X are not scaled to mean zero and standard
deviation one (autoscaled) as originally suggested for LAR [45,63].
Details of the exact LAR algorithms implemented are provided in
References [27] and [50]. The meta-parameter l for TR in 2-norm
and in 2-/1-norm weights the quality of prediction in the
secondary conditions. The a meta-parameter in 2-norm TR and
1-norm TR weights the size of the model vector and is necessary
to stabilize the algorithm as with ridge regression. Restating,
2-norm TR is ridge regression with a third penalty on the
predicting standardization set in 2-norm; 1-norm TR is ridge
regression with a third penalty on predicting the standardization
set in 1-norm; and 2-/1-norm TR is LASSO with a third penalty on
predicting the standardizations set in 2-norm.
Determining optimal meta-parameters is based on evaluating

tradeoffs in L-curves as dictated in Expressions (5), (7) and (9). The
L-curve approach was used in the previous 2-norm, 1-norm and
2-/1-norm TR calibrationmaintenance and transfer studies as well
other studies selecting wavelengths, number of basis vectors for
PLS and PCR, and the ridge parameter in ridge regression
[27,50,68,69]. Briefly, for a range of meta-parameter combi-
nations, a model prediction variance indicator (such as the 2- or
1-norm of the model vector) is plotted against a bias indicator
such as the prediction error for the calibration set, standardiz-
ation set, a monitoring set and/or the corresponding R2 values
[24,25,69,70]. In these plots, an L shaped curve is formed and the
better model is assumed to reside in the corner of the L-curve
with an acceptable tradeoff in plotted criteria. Sometimes a
log–log plot is used to accentuate the L curve shape. Respective
L-curve processes are described in the following section and used
throughout the study. For the corresponding three TR cases, a
and l values were varied to generate reasonable L-curves. The
maximum model number for the 1-norm and 2-/1-norm is a
default of the LAR algorithm.

6.1. Calibration maintenance

The temperature data represent the situation where a primary
model is formed under one condition and has to be updated to
handle a new condition. For the nine standardizations sets,
results are first presented for 2-norm TR followed by 1-norm TR
and then 2-/1-norm TR. Following this is the result of consensus
modeling.

6.1.1. TR in 2-norm

As previously noted, one goal of this paper is to present an easier
and more clear approach to select an appropriate a value in
Expression (5). Thus, for equivalency with Reference [26],
calibrating at 308C and predicting at the new temperature
508C is first described. Plotted in Figure 1 are prediction error
criteria root mean square error of calibration (RMSEC), the RMSE
of the standardization set (RMSEL), and for follow-up analysis, the
RMSE of validation (RMSEV) trends. From Figures 1a and b,
a¼ 0.0012 in the regions of common agreement is selected.
Inspecting these plots for common agreement in a between
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RMSEC and RMSEL is much simpler than the process described in
Reference [26] to determine a. As expected, the validation set also
requires this a for optimal prediction as the standardization set
was selected by the Kennard Stone algorithm and appropriately
spans the new temperature. Note that in the L-curves plotted in
Figure 1d, the area of agreement in the variance/bias tradeoff is
further established and also assists in selecting the a value. Once
the a value is established, the l value must be determined. The
same process used in Reference [26] is used here where the
tradeoff between RMSEC and RMSEL is ascertained.
This procedure just outlined for calibrating at 308C and

predicting at 508C was used to determine a for predicting at
708Cwith the Kennard Stone selected standardization set. Values in
Table I show that some of the randomly selected Ls provide slightly
improved results over the Kennard Stone selected samples while
others are slightly worse. This seems reasonable as the secondary
calibration space is small and with randomly selected samples, it is
not difficult to span or nearly-span the secondary condition. The
correlations between the nine model vectors range from 0.889 to
0.998 demonstrating little differences and hence, similar predic-

tions. All nine models perform better than using the primary
calibration model at 308C without updating. While biases are larger
than using a 2-norm TR model using calibration samples at 708C,
the biases are an order of magnitude smaller than that with no
updating.

6.1.2. TR in 1-norm

As outlined in Reference [27] for TR in 1-norm (Expression 7), the
first meta-parameter to determine is t (or actually, LAR model
number) from the L-curves formed by plotting model 1-norm
against the RMSEC for each LAR model over the a values, i.e.
points on each LAR model L-curve are a values and the most
Pareto L-curve (LAR model) is selected. Respective L-curves with
RMSEL are not informative and do not assist in selecting the
meta-parameter. After the LAR model selection, a is determined
from the corner region of the L-curve.
Results shown in Table II reveal that for the temperature data,

the prediction error using the Kennard Stone selected samples
is slightly better than the TR in 2-norm model in Table I with the
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Figure 1. Temperature data for calibrating at 308C and predicting at 508C for TR in 2-norm prediction error criteria and mean L-curve. For mean plots,

closed circle line in (a), (b) and (c), the mean is taken across l values (50 squared values ranging from 1� 10�5 to 1� 109) for each a value (60 squared

values ranging from 1� 10�15 to 0.5). Standardization set is that selected by Kennard Stone algorithm and the simplicity of plot can be compared to that
in Reference [26]. Note consistency in agreement of a for the calibration, standardization and validation samples a, b and c, respectively. Shown in (d) are

the same mean curves in (a), (b) and (c) plotted against the model 2-norm.
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Kennard Stone selected samples. Random selected samples for
E form some models with slightly improved predictions as well
as some models with slightly degraded predictions; similar to
the 2-norm TR models. As characterized by the relative
standard deviation RSD, the degree of variation in the RMSEV
values is less with 1-norm TR compared to 2-norm TR while the
R2 variation is slightly better suggesting that TR in 1-norm is
more robust to the standardization set composition. That is,
regardless of the standardization set composition, the
correlation between the 1-norm TR models ranges from
0.917 to 0.993, which is a smaller range than the 2-norm TR
models. Because of this tighter correlation range, the models

are more similar and hence, similar predictions. All nine models
perform better than primary calibration at 308C without any
updating.

6.1.3. TR in 2-/1-norm

The first task with TR in 2-/1-norm is to determine a good t

value for Expression (9) (LAR model) followed by determining l.
The approach is described in Reference [27]. Briefly, L-curves
are formed by plotting model 1-norm against RMSEC and
RMSEL for each l, i.e. points on each L-curve for a particular l
are the LAR models (t values). Once the LAR model is

Table I. TR in 2-norm, Expression (5), temperature data prediction results for 708C using the Kennard Stone (KS) selection and eight
random selections

Method RMSEV R2 Biasa kb̂k2 kb̂k1 a l

KS 0.0599 0.868 �0.0339 10.28 123.0 0.0117 0.1863
Set 1 0.0581 0.918 �0.0519 9.24 104.0 0.0140 0.4603
Set 2 0.0988 0.948 0.0964 9.21 112.6 0.0140 0.4603
Set 3 0.0616 0.860 �0.0347 10.23 122.0 0.0140 0.1271
Set 4 0.0534 0.855 0.0117 10.44 126.2 0.0117 0.0610
Set 5 0.0392 0.920 0.0046 10.00 122.7 0.0140 0.5532
Set 6 0.0463 0.895 �0.0132 10.02 120.1 0.0140 0.1863
Set 7 0.0323 0.951 0.0110 9.35 109.1 0.0168 0.0880
Set 8 0.0340 0.965 �0.0200 9.42 108.4 0.0140 0.3830
Meanb 0.0537 0.909 0.0308 9.80 116.4 0.0138 0.2784
Std Devb 0.0202 0.041 0.0288 0.49 8.0 0.0015 0.1857
RSD %c 37.60 4.57 93.49 5.00 6.86 10.89 66.72
Cal at 308C 0.2956 0.932 �0.2782 9.995 114.2 0.0140 —
Cal at 708C 0.0357 0.938 �0.0038 9.328 97.0 0.0168 —

a Bias¼ Pm
i¼1

ŷi � yið Þ
�

m.

bMean and standard deviation values are based on absolute values.
c RSD %: relative standard deviation per cent¼ (Std Dev/Mean)� 100.

Table II. TR in 1-norm, Expression (7), temperature data prediction results for 708C using the Kennard Stone (KS) selection and eight
random selections

Method RMSEV R2 Bias kb̂k2 kb̂k1 a

KS 0.0537 0.889 �0.0289 10.66 120.7 0.0117
Set 1 0.0550 0.962 �0.0461 11.22 118.1 0.0117
Set 2 0.0587 0.887 �0.0367 12.34 128.2 0.0081
Set 3 0.0535 0.883 �0.0266 11.05 120.6 0.0117
Set 4 0.0736 0.851 0.0488 13.54 135.2 0.0097
Set 5 0.0342 0.963 0.0220 9.28 105.8 0.0168
Set 6 0.0371 0.927 �0.0023 11.10 121.1 0.0097
Set 7 0.0445 0.908 �0.0146 13.03 139.8 0.0067
Set 8 0.0557 0.945 �0.0425 11.28 119.6 0.0140
Mean 0.0518 0.913 0.0298 11.50 123.2 0.0111
Std Dev 0.0119 0.039 0.0154 1.29 10.0 0.0030
RSD % 22.99 4.27 51.59 11.22 8.13 27.39
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determined from the corner region, l is selected at the point of
model vector convergence across all LAR models in the corner
region. Using this approach forms the model evaluation criteria
tabulated in Table III. The listed values show that except for the
first random set (Set 1), TR in 2-/1-norm is also essentially
unaffected by the composition of the standardization set L.
The correlations between the nine models range from
�6.74� 10�5 to 0.931 indicating the lack of total agreement
in selected wavelengths between each model. Shown in
Figure 2 are the nine model vectors demonstrating the
variances in selected wavelengths. Apparently, several wave-
lengths sets can be selected with small variations and still
provide acceptable updated models.
In comparison to 2-norm TR and 1-norm TR, the 2-/1-norm TR

approach provides several models with lower prediction errors
and performs best with the Kennard Stone selection. As with

the other two TR modes, TR in 2-/1-norm substantially improves
over primary calibration at 308C without any calibration
maintenance.

6.1.4. Consensus modeling

The simple approach of using the mean prediction from all nine
models without any prior model quality assessment is used in this
paper with the results presented Tables I–III. Of the three TR
approaches, 2-/1-norm TR does best with respect to mean RMSEV
and R2 values. Due to the larger prediction error for one of the
random samples with 2-/1-norm TR, the approach of TR in 1-norm
has smaller RSD values implying better consistency in predic-
tions. However, an approach that could be taken (not studied in
this paper) is to use an a priori cutoff of the similarities between
models such as the reported correlations. For example, if all

Table III. TR in 2-/1-norm, Expression (9), temperature data prediction results for 708C using the Kennard Stone (KS) selection and
eight random selections

Method RMSEV R2 Bias kb̂k2 kb̂k1 l

KS 0.0361 0.979 0.0034 48.95 77.45 6.100
Set 1 0.1031 0.938 �0.0927 37.98 85.04 67.00
Set 2 0.0317 0.960 0.0093 49.26 78.87 24.00
Set 3 0.0446 0.925 �0.0234 53.19 89.63 13.00
Set 4 0.0356 0.964 0.0208 43.23 95.80 70.00
Set 5 0.0270 0.966 �0.0090 48.09 116.5 46.00
Set 6 0.0227 0.986 0.0067 50.18 92.38 21.00
Set 7 0.0481 0.886 �0.0129 46.85 86.64 48.00
Set 8 0.0554 0.958 �0.0437 40.06 85.63 60.00
Mean 0.0449 0.951 0.0247 46.21 89.77 39.46
Std Dev 0.0241 0.031 0.0283 4.99 11.61 24.04
RSD % 53.72 3.24 114.7 10.75 12.93 60.92

850 900 950 1000 1050

Wavelength (nm)

Set 2

Set 1

KS

850 900 950 1000 1050

Wavelength (nm)

Set 5

Set 4

Set 3

850 900 950 1000 1050

Wavelength (nm)

Set 8

Set 7

Set 6

(a)
(b) (c)

Figure 2. Ninemodel vectors for temperature data for calibrating at 308C and predicting at 708C using TR in 2-/1-norm. Standardization sets correspond

to (a) Kennard Stone (KS), Sets 1 and 2; (b) Sets 3, 4 and 5; (c) Sets 6, 7 and 8. Model vectors are directly comparable as only an offset has been added for
clarity and hence, there is no y-axis label.
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intermodal correlations are greater than some cutoff, then
essentially, there is not enough diversity in the models and no
gains will be obtained from using a consensus approach, i.e. there
is no risk in selecting one model over another model. This
observation would suggest that the 1-norm TR may not be
appropriate for consensus modeling due to the high degree of
model similarity as noted by the inter-correlations reported in
Section 6.1.2. Conversely, there is a large degree of diversity
between the 2-/1-norm TR models (see inter-correlations in
Section 6.1.3) and simultaneously, good accuracy, the two
requirements needed for effective consensus modeling.

6.2. Calibration transfer

The corn data represent the situation where a primary model is
formed on one instrument (m5) and has to be updated to handle
a new instrument (mp5).

6.2.1. TR in 2-norm

With the corn data, results listed in Table IV demonstrate that
similar to temperature data, 2-norm TR is able to form acceptable
models with the random samples. Model vectors range in
correlation from �0.561 to 0.701.

6.2.2. TR in 1-norm

Using the same random samples as with 2-norm TR, Table V
shows that switching the 2-norm penalty in Expression (5) with
the 1-norm penalty in Expression (7) also generates good
predictive models. Additionally, the 1-norm TR models are much
more consistent in shape as the correlation between models
ranges from 0.875 to 1.00. As with temperature data, the model
vectors are not sparse (no specific wavelengths are selected). The
a meta-parameter is also much less varied than 2-norm TR. For
1-norm TR, the Kennard Stone selected standardization set is not
the best and all nine standardization samples are better than no
calibration transfer. With the temperature data, only 2-/1-norm TR
was able to form a model with better predictive performance
than calibration at the primary condition to predict at the same

primary condition. With the corn data, all nine of the 1-norm TR
models outperform calibration on the mp5 instrument to predict
validation samples measured on the same mp5 instrument.

6.2.3. TR in 2-/1-norm

Results listed in Table VI show that the 2-/1-norm TR functions
similar to 1-norm TR. One exception is that while 1-norm TR is
consistent in the prediction errors due to model similarities, 2-/
1-norm has one standardization set (Set 8) that does not form as
good as a predicting model relative to the other eight. However,
this model essentially predicts equivalently to the primary model
built for mp5 to predict the secondary samples also measured on
instrument mp5 (see Table IV for values). Except for this one
standardization set, most of the 2-/1-norm TRmodels outperform
the 1-norm TR models, including the Kennard Stone selected
samples.
Similar to the temperature data, the 2-/1-norm TR models are

varied in the wavelengths selected. The correlations between the
models range from �5.50� 10�5 to 0.930. Thus, as observed for
the temperature data, several wavelength combinations are
possible that allow model updating from one instrument to
another.

6.2.4. Consensus modeling

Consensuses modeling approaches for the three TR variants
operate equivalently in spite of the one poor 2-/1-norm TRmodel.
As with the temperature data, the corn 1-norm TR models show
poor diversity and hence, 1-norm TR is again probably not useful
for consensus modeling. It appears that if a large set of samples is
in fact available for selecting the standardization set from, using
consensus modeling approach with 2-/1-norm TR can reduce the
prediction risk compared to trying to select one updated model.

7. CONCLUSION

This study has shown that the three TR variants are not
significantly sensitive to the standardization sample subset

Table IV. TR in 2-norm, Expression (5), corn data prediction results for mp5 using the Kennard Stone (KS) selection and eight random
selections

Method RMSEV R2 Bias kb̂k2 kb̂k1 a l

KS 0.1520 0.896 0.0267 88.95 1242 0.0057 13.34
Set 1 0.1865 0.888 0.1035 105.8 1455 0.0057 51.09
Set 2 0.1923 0.889 0.1090 79.03 1137 0.0101 3.48
Set 3 0.1390 0.920 0.0440 103.6 1546 0.0032 3.48
Set 4 0.1371 0.913 �0.0010 101.0 1445 0.0032 3.48
Set 5 0.1870 0.895 0.1093 95.29 1406 0.0057 6.81
Set 6 0.1463 0.901 0.0040 87.22 1250 0.0057 13.33
Set 7 0.1845 0.861 �0.0556 67.32 1003 0.0101 6.81
Set 8 0.1844 0.847 �0.0220 121.4 1781 0.0057 6.81
Mean 0.1677 0.890 0.0528 94.40 1363 0.0061 12.07
Std Dev 0.0233 0.0232 0.0443 15.96 232.7 0.0025 0.1513
RSD % 13.91 2.61 83.92 16.91 17.08 40.68 125.31
Cal on m5 0.7396 0.773 �1.6776 37.98 594.9 0.0265 —
Cal on mp5 0.1971 0.824 �0.0446 46.71 529.9 0.0144 —
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composition. Prediction results and models were comparatively
consistent between the Kennard Stone selected samples and
random samples. Even in the case with the largest prediction
error for the corn validation set, the R2 and bias values are
suitable. This work also reported on an easier methodology to
select an a and l for TR in 2-norm in Expression (5) compared to
that presented in a previous publication [26].
For the data sets studied, once a ‘golden’ set of primary

calibration samples has been measured, it is relatively easy to
update the golden set to the new condition. Expected fundamental
variances can be spanned in the primary golden set and any
unexpected new variances can be included with only a few new
samples. For example, under current investigation is using virgin
olive oil samples from one geographic region to form a golden
model for predicting per cent adulteration and then applying
1-norm TR and 2-/1-norm TR to form an updated model to predict
samples for a different geographic region.
In this study, standardization samples are from the prediction

sample space of the secondary condition and instrument. While
literature suggests prediction sample-like samples perform better

compared to generic, sealed reference samples, or glass standards
for the standardization set [29–33], it may be that this observation is
less critical when TR is used. Studies of this nature are currently
under investigation.
An approach that may also prove to be robust to which

samples make up the standardization set is to weight each
standardization sample relative to a similarity measure to the
particular current prediction sample, i.e. a different set of weights,
and hence model, for each prediction sample. With each
sample a priori weighted, then Expression (7) or Expressions
(9) would be used. Weighting standardization samples in
calibration transfer and maintenance has proven effective in
other studies [71,72].
A consensusmodeling approach was also briefly evaluated and

it was found that acceptable results could be formed from
averaging respective predictions. In the truest form of consensus
modeling desiring model prediction accuracy and simul-
taneously, diversity in model structure, the 2-/1-norm best meets
these goals. However, using a consensus modeling approach for
multivariate calibration maintenance and transfer would require

Table V. TR in 1-norm, Expression (7), corn data prediction results for mp5 using the Kennard Stone (KS) selection and eight random
selections

Method RMSEV R2 Bias kb̂k2 kb̂k1 a

KS 0.1413 0.912 0.0238 75.96 1069 0.0064
Set 1 0.1691 0.913 0.0972 71.92 1010 0.0078
Set 2 0.1282 0.926 �0.0091 103.0 1517 0.0028
Set 3 0.1490 0.905 0.0357 70.39 1004 0.0078
Set 4 0.1528 0.895 �0.0162 64.39 927.3 0.0096
Set 5 0.1514 0.922 0.0757 88.55 1284 0.0043
Set 6 0.1617 0.882 �0.0071 58.47 858.5 0.0118
Set 7 0.1311 0.912 �0.0100 76.38 1090 0.0064
Set 8 0.1408 0.912 0.0231 70.39 1090 0.0064
Mean 0.1472 0.909 0.0331 75.49 1094 0.0070
Std Dev 0.0134 0.013 0.032 13.25 198 0.0026
RSD % 9.10 1.47 96.65 17.56 18.10 37.98

Table VI. TR in 2-/1-norm, Expression (9), corn data prediction results for mp5 using the Kennard Stone (KS) selection and eight
random selections

Method RMSEV R2 Bias kb̂k2 kb̂k1 l

KS 0.1261 0.936 0.0459 391.2 1032 17.59
Set 1 0.1483 0.925 0.0761 439.0 1049 12.76
Set 2 0.1598 0.926 0.0909 434.5 1080 17.59
Set 3 0.1186 0.936 0.0155 384.8 933.3 13.57
Set 4 0.1345 0.916 �0.0005 395.0 909.8 16.58
Set 5 0.1564 0.924 0.0891 412.0 1066 9.150
Set 6 0.1218 0.931 0.0043 466.2 1104 9.350
Set 7 0.1252 0.931 �0.0218 419.9 1053 19.60
Set 8 0.2078 0.817 �0.0509 312.5 921.5 15.38
Mean 0.1443 0.916 0.0439 406.1 1016 14.62
Std Dev 0.0283 0.038 0.0355 43.7 74.2 3.69
RSD % 19.59 4.12 80.91 10.76 7.30 25.26
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a pool of sample spectra measured in the secondary condition to
select from.
From the 2-/1-norm TR results, it appears that different sets of

selected wavelengths provide acceptable prediction results.
Methods of wavelength selection are usually one of the two
modes. One is to select individual wavelengths (as with 2-/
1-norm TR) and the other is determining wavelength intervals
(bands) [73]. There is probably no unique best set of wavelengths
and the method of TR 2-/1-norm appears to determine a suitable
subset of wavelengths. It could be possible to use TR in 2-/1-norm
for wavelength intervals by using a bootstrapping approach that
randomly selects samples for X and a histogram of preferred
selected wavelengths (acceptable RMSEC and RMSEL) is used
with an appropriate frequency cutoff to determine wavelength
intervals instead of a mean (consensus) prediction from the
collection of models or a mean model vector from the collection
of model vectors. Alternatively, wavelengths could be randomly
selected and TR in 2-normwould be used to formmodels and the
resultant histogram of preferred wavelengths would be used to
determine wavelength bands [73].
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