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In this study, calibration maintenance confronts the
problem of updating a model developed in the primary
condition to accurately predict the calibrated analyte in
samples measured in new secondary conditions. Calibra-
tion transfer refers to updating a model based on a
primary instrument to predict samples measured on new
secondary instruments. A 2-norm variant of Tikhonov
regularization (TR) has been used with spectroscopic data
to perform calibration maintenance and transfer where
just a few samples measured in the secondary condition/
instrument are augmented to the primary calibration data
to update the primary model. To achieve improved
predictions, in this paper we report on 1-norm penalties
to create two novel variants of TR for model updating. To
solve the multiple penalty minimization numerical problems
involved with the new TR variants, data transformation
processes are applied, allowing a least absolute shrinkage
and selection operator type algorithm to be implemented.
Near-infrared spectra measured under two different tem-
peratures represent the calibration maintenance application,
and near-infrared spectra measured on two instruments
denote the calibration transfer situation. Compared to TR
in the recently developed 2-norm penalty mode, validation
sample prediction errors are reduced when the 1-norm TR
variant that selects wavelengths is used.

A multivariate spectral calibration model is restricted in
prediction capabilities because, over time, sample, environmental,
and instrumental conditions change and introduce new variances
not accounted (calibrated) for in the original primary model.
Calibration maintenance and transfer address the issue of adjust-
ing spectra and/or the primary model such that the model
continually predicts with the same quality. Calibration maintenance
specifically requires building a model in the original primary
condition and then maintaining this model to form accurate
predictions of new samples measured in new noncalibrated
secondary conditions. New secondary conditions can include
temperature, pressure, particle size, pH, humidity, and new
spectrally responding species. Calibration transfer involves build-
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ing a model on a primary instrument and then predicting samples
measured on a new instrument (secondary instrument). Addition-
ally, the secondary instrument can be the primary instrument at
a later point in time. In addition to basic differences between two
different instruments, transfer problems can also include drift in
instrument measurements or repairing the instrument with new
components. Calibration maintenance and transfer have been
subjects of numerous studies and are well reviewed.!™*

There are three common ways to perform spectral calibration
maintenance and transfer.

The first method is to build an exhaustive model robust
enough to accurately predict in future conditions. This type of
model building requires many samples to properly span antici-
pated variances during the lifetime of the model. Alternatively,
on an as-needed basis, a large set of samples measured in the
secondary conditions can be added to samples measured in the
primary conditions. This process essentially amounts to a complete
recalibration that can be costly and time-consuming. A related
approach to building a robust model is using spectral preprocess-
ing methods such as multiplicative scatter correction,”® finite
impulse response filters,”® derivatives, orthogonal correction,”°
and wavelength selection.' ™4
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The second approach to calibration maintenance and transfer
is to transform spectra measured in the secondary condition to
appear as if the samples were measured in the primary condition.
Such processes require a small set of samples (standardization
set) to be measured in both conditions and allow mapping from
one spectral domain to another, e.g., from mid-infrared to near-
infrared (NIR) or from a low-resolution instrument to a high-
resolution instrument.'™® Thus, this second approach is limited
to conditions that alter spectra (wavelength shifts, intensity
changes, and/or baseline offsets) and is not applicable when new
variances arise such as new spectrally responding species or the
analyte concentration in a new sample is outside the primary
condition concentration range. Further limiting this spectral
transformation method is the need to have a stable standardization
set for the same samples to be measured under primary and
secondary conditions. A recent variation of orthogonal preprocess-
ing in conjunction with spectral transformation is dynamic
orthogonal projection where a few samples are measured in the
secondary condition and, using kernel functions, these spectra
are modified to appear as if they were measured in the primary
condition.'® Spectral differences between the actual secondary and
the same samples estimated as primary spectra are then used in
the orthogonal preprocessing. With this approach, measurement
in the primary condition is not required, eliminating the need for
standardization set stability.

A third approach is to infuse into the primary model informa-
tion describing the secondary condition, thereby providing a
mechanism by which the primary model can be updated to predict
in the new conditions. To account for new secondary conditions,
spectra of samples measured in the secondary conditions are
augmented to the primary spectra and an updated model is
obtained. As noted previously, many samples are generally needed
to span the new condition, whether it be chemical, physical, and/
or instrumental differences requiring correction, and this amounts
to a full recalibration. Recent work using a Tikhonov regularization
(TR) model updating process only requires a few samples
measured in the secondary condition.” In this paper we report
on two new TR variants, one of which includes wavelength
selection as part of the model updating. Because it has been shown
that wavelength selection alone can accomplish calibration main-
tenance and transfer,'* it is expected that TR with wavelength
selection will significantly improve the capabilities of TR. The new
approaches are applied to two NIR spectral data sets. One is
concerned with calibration maintenance where the primary model
formed at 30 °C needs to be updated to handle samples measured
at 50 °C. The other data set deals with calibration transfer. While
model updating with TR does not easily lend itself to some unique
situations where spectral transformation processes are applicable,
e.g., adjusting spectra measured in one spectral domain to appear
as if the samples were measured in another spectral domain,
model updating with TR can correct for situations when new
variances arise such as new spectrally responding species or the
analyte concentration in a new sample is outside the primary
condition concentration range.
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VARIANTS OF TIKHONOV REGULARIZATION

The standard relationship for multivariate calibration used to
develop the primary model is given by

y=Xb + e (03]

where y represents an m x 1 vector of quantitative analyte values
(such as concentration) for m calibration samples, X represents
the m x n matrix of spectra of # wavelengths or frequencies for
the primary condition, and b represents the # x 1 vector of primary
model coefficients. The m x 1 vector e indicates normally
distributed errors with mean zero and covariance matrix o1
When # > m, the common spectral situation, methods such
as ridge regression (RR), partial least squares (PLS), or
principal component regression (PCR) can be used to estimate
b by b = X+ , where X' is the respective pseudoinverse of
X.1819 The model vector b must also be able to accurately predict
analyte values in any new sample spectrum, X,ey, DY Yiew = xﬁlewf).
Wavelengths can be selected, and if a small enough set is
selected such that » < m and X is well conditioned, then
multiple linear regression (MLR) can be used to estimate the
model vector.'®1?

It is possible to measure only a few new samples in the
secondary condition over the same wavelengths as those mea-
sured for the primary calibration samples, represented as M and
yum, and augment this new information to the original primary
calibration data if these new samples are properly weighted
by A. Ignoring the e term, eq 1 can be modified to include the
weighted augmentation as

(i,yM) B G(M )b @

Without the weight metaparameter (tuning parameter) 4, one runs
into issues of the new calibration model being more influenced
by the original primary conditions.

Equation 2 can be solved by PLS, PCR, or some other method.
In this case, eq 2 is reformatted to y, = Xu’b, where the A
subscript denotes the augmented arrays in eq 2 and the slanted
prime represents spectra modified relative to PLS, PCR, or some
other method. For PLS or PCR, the modified X is the respective
projected matrix.'®19?! Essentially, PLS or PCR determines the
model vector satisfying the expression min IX,’b — yall,?, where
Il...Il, denotes the vector p-norm and the subscript 2 symbolizes
the vector 2-norm (Euclidean norm). In recent work on
calibration maintenance and transfer, satisfactory results were
obtained by using PLS with eq 2.17

TR 2. It is also possible to solve eq 2 by a TR approach.
Specifically, a solution is sought that satisfies

min(Xb — yil,> + 24 Mb — yyll,") ®)
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In applying expression 3 to calibration maintenance and transfer,
it was found that an additional tuning parameter, 7, was needed,
and expression 3 becomes

min(Xb — yil,” + 74bll,> + A%Mb — yyll,") )

where 7 represents a penalty on the model 2-norm.’” The first
two terms in expression 4 are RR (another form of TR), and hence,
expression 4 can be thought of as an RR-based method with an
additional 2-norm penalty on predicting a few samples measured
in the secondary condition. In applications of TR in the RR format,
the first term of expression 4 has been labeled a bias (accuracy)
indicator and the middle term reflects the model size and acts as
a variance (precision) merit.>*?! Note that when M = I, the
identity matrix, and yyy = O in expression 3, this expression
reduces to RR. Using TR in expression 4 will be referred to as
TR applying the 2-norm (TR 2) to the new spectral conditions.

The TR variant in expression 4 estimates b such that it is
desensitized to the new noncalibrated spectral artifacts in M that
are confounding an accurate analyte prediction. Simultaneously,
the model vector needs to accurately predict the original primary
calibration samples lacking the new secondary condition as well
as keeping the size of the model vector from being too large. Too
large a model vector increases the chance of forming an overfitted
model, and prediction variances can escalate.

The quality of the model from TR 2 depends on the values
selected for metaparameters 5 and A, just like the PLS, PCR, or
RR model quality depends on the number of basis vectors (factors,
latent vectors) for PLS and PCR or the ridge value for RR. In this
work, the L-curve approach is used to select metaparameter values
as described in the Model Selection and Results and Discussion
sections.

TR 2—1. Changing the regression model 2-norm penalty to a
1-norm in expression 4 forms the following expression:

min(Xb — yil,” + bl + A4Mb — yyll) ®)

where 7 symbolizes the 1-norm tuning parameter. For this paper,
expression 5 shall be referred to as TR applying the 2-norm and
the 1-norm (TR 2—1) to the new spectral conditions. To avoid
confusion with # being used for weighting the model 2-norm
penalty, the 7 symbol is used to clarify weighting the 1-norm
penalty. Both tuning parameters in expression 5 are determined
by an L-curve approach.

The 1-norm acts similarly to the 2-norm in expression 4 in that
the 1-norm guards against over- or underfitting. However, unlike
the 2-norm, the 1-norm restricts solutions of b to be sparse and,
hence, performs wavelength selection. The least absolute shrink-
age and selection operator (LASSO) results from expression 5
when the third term is removed.!®?272* Thus, expression 5 can
be thought of as LASSO (wavelength selection) with an additional
penalty minimizing prediction error for a few samples measured
in the secondary conditions. The LASSO approach by itself (the
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first two terms in expression 5) has been used for multivariate
calibration with wavelength selection.?#?*> Expression 5 also
contains a method known as the elastic net when M = I and
ym = 0,'9% and this TR process has also been studied for
multivariate calibration with wavelength selection.?

Because it has been shown that (1) TR 2 can accurately
perform calibration maintenance and transfer'” and (2) TR 2—1
includes wavelength selection capabilities (coupled with the fact
that wavelength selection alone has been shown to accomplish
calibration maintenance and transfer!*'4), TR 2—1 should be an
improvement over TR 2. An advantage of using TR 2—1 over a
wavelength selection algorithm such as a genetic algorithm is that
model formation and wavelength selection occur simultaneously
and, hence, less empirically set algorithm parameters are needed.
This advantage and others are described in ref 25.

TR 1. Alternatively, the 1-norm penalty can be applied to
predict the new samples measured in the secondary conditions
in expression 4 instead of the 2-norm. In this case, the following
expression results:

min(Xb — yil,” + 7Abll,* + 7IMb — yyll) (6)

This variation of TR shall be referred to as TR applying the 1-norm
(TR 1) to the new spectral conditions and can be thought of as
RR with an additional 1-norm penalty on predicting samples in
the secondary condition. Expression 6 also contains the elastic
net in the special case with M =1 and y,; = 0. As with TR 2 and
TR 2—1, the L-curve approach is used to determine good values
for # and 7.

ALGORITHMS

The model vector for expression 4 is obtained by the least-
squares solution b = XX + I + A2MM) ! (Xly + 12Myy).
Using ranges for the metaparameters # and 4, the resulting
models are evaluated using the L-curve approach to assess
appropriate metaparameter values. This process is described
in the Model Selection section.

The least-angle regression (LAR) algorithm?” is one of several
algorithms that can be used for LASSO and is written as

min(Xb — yil,” + lbll,) @)

Note that the LAR algorithm does not directly use a 7 value.
Instead, each iteration corresponds to a nonzero model vector
coefficient in b being added or removed from the model vector
in the previous iteration. The value 7 = 0 forms the classical least-
squares solution (model vector in the last iteration of the LAR
algorithm). In this paper, the LAR algorithm is used to solve
expressions 5 and 6 with the modification that the columns of X
are not scaled to mean zero and standard deviation 1 (autoscaled)
as originally suggested for LAR?" Instead, all data are mean
centered for all algorithms. In previous work with LAR for
multivariate calibration with wavelength selection and autoscaled
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data, it was found that inappropriate wavelengths were selected;
i.e.,, wavelengths with the best sensitivity were not selected in
simulated situations as all wavelengths were seen to have equal
sensitivity after scaling.?®

For TR 2—1 written as expression 5, the data are reformatted
to fit expression 7 to allow using LAR. This consists of augmenting
X and y in expression 5 with AM and Ayy to form

X
X = (AM)
and
_ |y
Ya= (lyM)
to form
min(Xyb — yull,2 + 7lbll) 8)

and the LAR algorithm can now be used.

For TR 1 written as expression 6, the data were also reformat-
ted and, additionally, transformed prior to using the LAR algo-
rithm. Similar to expression 5, X and y are first augmented with

nl and O to form
(X
%= (711)

and

= (o)

Using the augmented data, expression 6 now becomes

min(X,b — yull,? + 71Mb — yyll) )

Next, using processes described in refs 28—30, the augmented
data are transformed, and expression 9 is now written as

min(X,b — §4ll,> + libll,) (10)

which can now be solved by the LAR algorithm. The bar indicates
transformed data, and the LAR estimated model vector b must
be transformed back to the estimated model vector b that is used
to obtain prediction concentrations. While this transformation
process is new to using TR in 1-norm, transformations have been
used with TR written as expression 3 and with PLS and PCR to
apply derivative operators and obtain smooth model vectors as
well as with expression 3 to apply penalty weights based on
spectroscopic noise.*’
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MODEL SELECTION

The L-curve approach to determine suitable tuning parameters
and, hence, the final model is well described.?!?°=! The basis of
the approach for RR, PLS, PCR, or TR 2 is plotting the model
vector 2-norm (or any measure related to prediction variance or
model complexity) against the root-mean-square error of calibra-
tion (RMSEC) (or any measure characterizing prediction accuracy
or bias). In such a plot, an L-shaped curve is obtained with each
point on the curve representing a model based on a different
metaparameter and the better model is in the corner region
nearest the origin. This model represents the best compromise
for the bias/variance trade-off, i.e., the most harmonious model.
For TR 2 represented by expression 4, such L-curves were used
to sequentially determine tuning parameters 7 and 17 and the
process was recently improved.*? Noting that TR 2—1 and TR 1
in expressions 5 and 6, respectively, are reformatted to expressions
8 and 10, respectively, the focus is on the 1-norm penalties, and
hence, the model vector 1-norm is used instead of the 2-norm in
forming the L-curves. Each expression still requires determination
of two metaparameters, and described in the Results and Discus-
sion section is the process used to sequentially ascertain respective
metaparameters.

EXPERIMENTAL SECTION

Software. MATLAB 7.8 (The MathWorks, Natick, MA)
programs for TR were written by the authors.

Data Centering. Data are mean centered using the local mean
centering approach. Local mean centering is the process whereby
X, y, M, and yy are each mean centered to the respective
means. Validation spectra measured in the same secondary
conditions as M are mean centered to the mean of M. Locally
mean centered is best used when specific conditions of the
new samples are known and has been shown to provide
improved modeling performance.®*** Under certain conditions,
the samples in M may have been measured under both the
primary and secondary conditions. In this case, difference spectra
can be used for M, yy is set to the zero vector, and only X and
y are mean centered. Validation samples in the secondary
condition are now centered to the mean of X.

Data Sets. Temperature. A total of 22 samples composed of
water, ethanol, and 2-propanol were measured from 590 to 1091
at 1 nm intervals at 30, 40, 50, 60, and 70 °C.3® Spectra from 850
to 1049 nm are used in this paper. Temperature-specific calibration
and validation sets described in ref 35 were used to form the same
respective 13- and 6- sample calibration and validation sets (pure
component samples are excluded). Results are presented in this
paper for primary calibration of ethanol at 30 °C to predict ethanol
at 50 °C. To select the samples for M, the Kennard Stone
algorithm®® was applied to the 13-sample calibration set at 30 °C,
but measured at 50 °C. The Kennard Stone algorithm utilized
selects the first sample closest to the mean, and successive

(31) Aster, R. C.; Borchers, B.; Thurber, C. H. Parameter Estimation and Inverse
Problems; Elsevier: Amsterdam, 2005.

(32) Kunz, M. R,; Ottaway, J.; Kalivas, J. H.; Andries, E. J. Chemom., in press.

(33) Du, Y. P.; Kasemsumran, S.; Maruo, K.; Nakagawa, T.; Ozaki, Y. Anal. Sci.
2005, 21, 979-984.

(34) Kalivas, J. H. J. Chemom. 2008, 22, 227-234.

(35) Wiilfert, F.; Kok, T. W.; Smilde, A. K. Anal. Chem. 1998, 70, 1761-1767.

(36) Bouveresse, E.; Hartmann, C.; Massart, D. L.; Last, I. R.; Prebble, K. A.
Anal. Chem. 1996, 68, 982-990.
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samples are further from this sample. These sample sets are the
same as those used in ref 17.

Corn. A total of 80 samples of corn were measured from 1100
to 2498 at 2 nm intervals on three NIR spectrometers designated
mb, mp5, and mp6.>” For this study, every other wavelength is
used for a total of 350 wavelengths. Reference values are provided
for oil, protein, starch, and moisture content, and protein is the
prediction property studied in this paper. A total of 30 samples
selected using a Kennard Stone algorithm on the 80 samples
measured on instrument m5 serve as the primary calibration set.
Validation samples are the remaining samples, but measured on
instrument mpb5. A total of 4 samples for M were selected by a
Kennard Stone algorithm from the same 30 calibration samples,
but measured on instrument mp5. These sample sets are the same
as those used in ref 17.

Metaparameter 4, 7, and 7 Values. For TR 2—1 with the
temperature data, 290 1 values are used ranging from 0 to 100 in
equal linear increments. For the corn data, A varied from 0 to 20
in equal linear increments over 100 values. For TR 1 with the
temperature data, 100 » values are used ranging from 0 to 0.7 in
exponential increments. For the corn data, values ranged from 0
to 5 in exponential increments over 100 values. Since LAR is being
used, numerical values of 7 are not involved, and instead, an LAR
iteration (model) must be selected. Successive LAR models
approach the least-squares solution and correlate to an increasing
7 value. The # and A values for TR 2 were those determined best
in ref 17.

RESULTS AND DISCUSSION

Results for TR 2 have recently been published'” and are
compared to those developed for TR 2—1 and TR 1. Each TR
approach is investigated using four samples in M and difference
spectra of the four samples in M. It is possible to evaluate
differences as the samples selected for M have actually been
measured in both the primary and secondary conditions for both
data sets. As previously noted, values for yy are zero with
difference spectra. It was observed that the best results for TR
2 were obtained with difference spectra as the unique differ-
ences between the primary and secondary conditions could be
better characterized and weighted to form a model vector with
greater orthogonality to the secondary condition.”

Calibration Maintenance. The temperature data set repre-
sents calibration maintenance as a primary model can be formed
at one temperature (condition) and then updated to predict at a
new temperature. The process to select TR 2—1 tuning parameters
is first described followed by a description of the method used
for TR 1. After selection of respective metaparameters, results are
discussed for final selected models in conjunction with results
from TR 2 and RR with no calibration maintenance.

TR 2—1. In determining acceptable metaparameters for TR
2—1 in expression 5, it is desirable to minimize both the RMSEC
and RMSEM. The first metaparameter to determine is 7 (LAR
model). Shown in Figure 1a,b are L-curves for RMSEC (samples
at 30 °C) and RMSEM (samples at 50 °C) with the model 1-norms
where each L-curve represents a different A value and each point
on a curve is an LAR model. As 1 increases in value (greater
weight on predicting the samples in M) the L-curves move further

(37) Wise, B. M.; Gallagher, N. B.; Bro, R.; Shaver, J. M. PLS_Toolbox 3.0 for
Use with MATLAB; Eigenvector Research: Manson, WA, 2003.
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Figure 1. TR 2—1 temperature 1-norm L-curves where each curve
represents a different A value (increasing from right to left) and points
on the curves correspond to different LAR models with model number
(7) increasing with the 1-norm: (a) RMSEC for the primary calibration
samples at 30 °C, (b) RMSEM for the four M samples measured in
the secondary conditions at 70 °C, (c) RMSEP for the validation
samples measured in the primary condition at 30 °C, (d) RMSEV for
the validation samples measured in the secondary conditions at 70 °C.
Note that (d) would not be available for true new samples and is only
shown to display how the RMSEYV varies with the metaparameters.

to the left in Figure 1b, and hence, with each increase in 4, the
RMSEM is reduced. From Figure 1la, it is observed that the
models essentially converge at a certain 1-norm value. It turns
out that this is also true with the RMSEM plot in that, as A
increases, the L-curves converge within a tolerance and the LAR
models converge as well. Using the 1-norm of convergences from
Figure 1a where the RMSEC and 1-norm are minimized as a guide
(the corner region of the RMSEC L-curve with l-norm at
approximately 89), the LAR model number is selected from the
RMSEM L-curve in Figure 1b as that furthest to the left. To
achieve the final model (final A) with the least amount of
overfitting for a fixed 7, each model vector is analyzed over the
full A range at the selected LAR model number (r). Plotted in
Figure 2 are the model vectors, and the final A is the smallest
value where the model vectors first converge to the same shape.
Beyond this point, the RMSEM slightly decreases while the
1-norm slightly increases.

Plotted in Figure 1d are the L-curves for the validation samples
measured at 50 °C showing the models acceptable for predicting
the primary calibration samples, and simultaneously the secondary
samples in M are also applicable to predicting the new samples
in the secondary condition. Similarly, using the six validation
samples but measured in the primary condition to form the
prediction errors (RMSEP) plotted in Figure 1d, these samples
are also best predicted in the selected 1-norm region. This
observation suggests that, if possible, samples measured at the
primary condition can be left out of the TR model development
and used to further assist model selection.

TR 1. Shown in Figure 3 are TR 1 L-curves with RMSEC and
model 1-norms. Plotted are the last 5 LAR models formed (out of
11 total LAR models) as these were the leftmost (Pareto) curves.
Opposite TR 2—1, each TR 1 L-curve corresponds to an LAR model
(r) and each point making up a curve is an 7 value. As the value
of  increases, the 1-norm increases in value along a given LAR
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Figure 2. Temperature TR 2—1 model vectors with » values
increasing in magnitude as the » number decreases in the plots. At
approximately » number 60, model vectors have converged in shape,
and beyond this point with decreasing # number ( value increasing
in magnitude), only the 1-norm slightly changes.
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Figure 3. Temperature 1-norm L-curves for TR. Curves are the last
five models formed by the LAR algorithm. Points on each are 7 values
increasing in magnitude with an increase in 1-norm.

model L-curve. The sequence is to first determine which LAR
model is appropriate and next which » value. The approach used
here is to use the LAR L-curve that is most Pareto (closest to the
origin) and use the # value in the corner of the L-curve. From
Figure 3 it is seen that the L-curves intersect over the narrow
1-norm region, and this fact assists in determining the 1-norm
and, hence, 7 value for the final model. The better LAR model is
then the one that maintains the more consistent Pareto structure
over the range of 5 values. While the RMSEM L-curve is useful
for TR 2—1, these L-curves provided no new information or
assistance in selecting the tuning parameters.

Model Evaluations. Listed in Table 1 for the final selected TR
2—1 and TR 1 models are model evaluation criteria composed of
RMSEV, R?, the 2- and l-norms of the model vectors, and
respective 1 and 5 values. Also listed are the evaluation criteria
for TR 2 and RR (without M) previously obtained.!”

Since the objective of calibration maintenance is to predict in
the new conditions with as few secondary samples spanning the
secondary conditions as possible, four samples are used for M.
This number was found to be reasonable in the previous work
with TR 2.2 With four samples, TR 2—1 provides the smallest

Table 1. Temperature Results

method M RMSEV R b, b, i
TR 2 spectra  0.0408 0.983 10.6 1230 0.012 5.11
TR 2-1 spectra  0.0253 0.998 47.9 104.0 7.20
TR 1 spectra 00571 0.964 10.8 1126 0.012
TR 2 difference 0.0272 0.992 165 117.3 0.005 3.65
TR 2-1 difference  0.0222 0.994 543 107.4 48.0
TR 1 difference 0.0993 0.946 11.9 133.6 0.010
RR with no M, 02158 0.934 879 1002 0.020
cal at 30 °C
RR with no M, 0.0207 0978 815 92.6 0.024
cal at 50 °C

RMSEV value compared to TR 2 and TR 1. Shown in Figure 4
are the respective model vectors. Notice that, even though a
1-norm is used with TR 1, a sparse model is not obtained. The
improved result with TR 2—1 suggests that a sparse solution with
selected wavelengths provides a better model-updating process.
This agrees with literature that has shown wavelength selection
alone can provide good quality calibration maintenance and
transfer.!'~!* With TR 2—1, the advantages of TR 2 and wavelength
selection are combined. All three TR variants improve on the
prediction obtained by RR without calibration maintenance. Only
TR 2—1 does as well as using an RR calibration model specifically
formed for the secondary condition.

Using difference spectra in M with yy set to the zero vector,
reductions of the RMSEV values are observed for TR 2 and
TR 2—1, but the TR 1 RMSEYV value increases. It was previously
noted that difference spectra allow TR 2 to better determine a
model vector with improved orthogonality to the new conditions
because there is only nonanalyte information in M.'” Appar-
ently, this does not hold with TR 1.

Calibration Transfer. The corn data set represents a calibra-
tion transfer situation since the primary model is built on one
instrument and then has to be updated to use on a new instrument,
i.e., instrument mb to instrument mp5. Table 2 list the results
obtained by using the TR 2—1 and TR 1 protocols outlined for
the temperature data.

When using spectra for M, TR 2—1 provides the best results
followed by TR 1, with TR 2 performing the worst of the three.
Nevertheless, TR 2 still performs substantially better than no
calibration transfer at all and is comparable to using the RR model
specifically formed for the new instrument with a full calibration.
Interestingly, the RMSEV values for TR 2—1 and TR 1 improve
beyond the RR RMSEYV value for calibration on mp5 to predict

40

20

850 900 950 1000 1050
Wavelength (nm)

Figure 4. Temperature TR 2 (green), TR 1 (blue), and TR 2—1 (red)
model vectors. TR 2 and TR 1 model vectors have been multiplied
by 20 for plotting.
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Table 2. Corn Results

method M RMSEV R bl b, 5 A
TR 2 spectra 0.1881 0.836 57.5 834.0 0.013 7.15
TR 2—-1 spectra 0.1261 0.945 391.2 1032 17.6
TR 1 spectra 0.1413 0912 76.0 1069 0.006
TR 2 difference 0.1744 0.866 57.1 846.0 0.014 14.0
TR 2—1 difference 0.1293 0.924 346.4 1054 19.0
TR 1 difference 0.2101 0.896 76.5 1061 0.006
RR with no M, 0.9551 0.882 58.5 858.5 0.012

cal on m5
RR with no M, 0.1732 0.864 63.8 923.5 0.008
cal on mpb

validation samples measured on mpb. Plotted in Figure 5 are the
respective model vectors with trends similar to those of the
temperature data.

When difference spectra are used in M, TR 2—1 continues to
provide a lower RMSEV value and has approximately the same
RMSEYV value as with using spectra. Similar to the temperature
data, the RMSEV value for TR 1 increases, confirming that
difference spectra are probably not useful with TR 1. As also
observed with the temperature data, using difference spectra
assists TR 2 to form a better predicting model, but for TR 2—1,
no improvement is really gained. This is important because it
implies that, for model maintenance or transfer, only a few spectra
at the new conditions are needed and samples measured in the
primary condition are not required.

CONCLUSION

This study demonstrates that TR 2—1 and TR 1 are viable
approaches to accomplish calibration maintenance and transfer.
It appears that because TR 2—1 also carry outs wavelength
selection, it performed the best. While difference spectra assist
TR 2 and degrade TR 1 results, the TR 2—1 approach generally
did not improve nor degrade, providing further enhanced capabili-
ties to complete calibration maintenance and transfer without
requiring stable standardization samples that were measured
under the original calibration primary conditions. It was also
observed that if enough samples are available in the primary
condition, then additional data splitting would allow generation
of L-curves for prediction samples in the primary condition to
assist in selecting metaparameters.

Developed in this paper is an empirical graphical protocol to
determine model metaparameters whereby satisfactory predictions
are subsequently obtained. The mechanics of metaparameter
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Figure 5. Corn TR 2 (green), TR 1 (blue), and TR 2—1 (red) model
vectors. TR 2 and TR 1 model vectors have been multiplied by 20
for plotting.
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selection outlined are consistent for the two data sets studied. To
make TR more adaptable, an algorithm is needed to automatically
select appropriate metaparameters. While TR 1 provides results
comparable comparable to those of TR 2—1, the TR 2—1 method
is preferred due to the simpler and, hence, more specific L-curve
procedure.

In this study, samples for M were selected from a large set
using the Kennard Stone algorithm to obtain a representative
subset of samples spanning the secondary condition. Such a larger
set of samples measured in the secondary condition is often not
available, or else one might as well perform a full recalibration.
Recent work using randomly selected samples for M has shown
that TR 2—1, TR 1, and TR 2 are fairly robust to the actual
composition of M.?? In that work, it was also possible to use a
consensus modeling approach with TR 2 and TR 2—1.

It should be noted that methods of wavelength selection are
usually one of two modes. One is to select individual wavelengths,
and the other is determining wavelength intervals (bands).® Using
TR 2—1 falls into the first category, and evaluated in this paper is
the notion of determining a model with a selected subset of
wavelengths. There is probably no unique set of wavelengths that
is best, and the positive results obtained using consensus modeling
approaches for calibration maintenance and transfer with wave-
length selection®® warrant further investigation. The method of
TR 2—1 is a simple process that appears to determine a suitable
subset of wavelengths. As previously noted, the advantage of using
TR 2—1 over a wavelength selection algorithm that requires
iterative selection of a wavelength subset, model determination,
and model and then evaluation is that the TR 2—1 model is
determined and evaluated in conjunction with wavelength selec-
tion. Because of this more streamlined approach, less empirically
determined algorithm parameters need to be set.

It is possible to form a more encompassing expression that
contains all of the above expressions as well as RR, LASSO, and
the elastic net, all under specific respective conditions, by writing
the following expression:

min(Xb — yil,”> + 24Mb — yyll,” + #dIMb — yyll)
1n

Expression 11 also contains a method known as adaptive LASSO
when the second term is removed and in the third term yy = O
and M is a diagonal matrix.'®*° Such an approach has recently
been studied for multivariate calibration with wavelength selec-
tion.?® Application of expression 11 to calibration maintenance and
transfer is not studied in this paper as a third tuning parameter on
the model vector 2-norm would probably be required and, hence,
complicate tuning parameter determinations. Additional penalty terms
could be added as well, such as a model 1-norm penalty to force
wavelength selection. With each new penalty in the minimization
expression comes the addition of a new tuning parameter and
determination of a proper value taking into account the trade-off with
the other tuning parameters in the minimization expression.
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Other variants of these expression are possible such as recent
work using expression 3 with M = derivative operators and
ym = O to form a smooth model vector b.*° Additional variations
of TR have been reviewed.”?!
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