EALBUQUERQUE <

High Performance Computing Center

MPI Workshop - |

| ntroduction to Point-to-Point
and
Collective Communications

AHPCC Research Staff
Week 1 of 3

%ALBUQUERQUE <

; High Parformance Computing Center

Table of Contents

» Introduction
» MPI Course Map
» Background

» MPI Routines/Exercises

& point-to-point communications
+ blocking versus non-blocking calls
+ collective communications

» How torun MPI routinesat AHPCC (Blackbear)
> References

%ALBUQUERQUE <

. High Parformance Computing Center

» Parallelism is done by:
& Breaking up the task into smaller tasks

¢ Assigning the smaller tasks to multiple workersto
work on simultaneously

& Coordinating the workers

¢ Not breaking up the task so small that it takes longer
to tell the worker what to do than it doesto do it

[1Buzzwords: latency, bandwidth

%ALBUQUERQUE <

> All parallel computers use multiple processors

¢ There are severa different methods used to classify
computers

¢ No single schemefits all designs

¢ Flynn's scheme uses the relationship of program
Instructions to program data.
[1SISD - Single Instruction, Single Data Stream
[1SIMD - Single Instruction, Multiple Data Stream

[IMISD - Multiple Instruction, Single Data Stream (no
practical examples)

[IMIMD - Multiple Instruction, Multiple Data Stream
[1SPMD - Single program, Multiple Data Stream

 gpecial case, typical MPI model

: High Performance Computing Center The University of New Mexico

%ALBUQUERQUE <

: High Performance Computing Center The University of New Mexico

» Underlying model - MIM D/SPM D

+ Parallelism achieved by connecting multiple
processors together

¢ Includes all forms of multiprocessor configurations

& Each processor executes its own instruction stream
Independent of other processors on unigque data stream

¢ Advantages

[] Processor s can execute multiplejob streams
simultaneoudly

[1 Each processor can perform any oper ation regar dless of
what other processors are doing

ALBUQUERQUE T

- |
High Performance Computing Center The University of New Mexico

¢ Disadvantages

[]Load balancing overhead - synchronization needed to
coordinate processors at end of parallel structurein a
single application

MIMD Model
. _ O 5I1=1,N
Z=xMy 7=XMy A =0.0 CG=a"h
call A(z,n] call A{z,n) Bh=14.8 x=c**2+a"h| ...
i : CONTINUR .
processor 1 processor 2 processor 3 processor 4

%ALBUQUERQUE <

: High Performance Computing Center The University of New Mexico

>» MPI Memory Model - Distributed Memory

¢ Multiple processors operate independently but each has its own
private memory

¢ Datais shared across a communications network using message
passing

¢ User responsible for synchronization using message passing

¢ Advantages

[Memory scalable to number of processors. Increase number of
processor s, size of memory and bandwidth increases.

[] Each processor can rapidly accessits own memory without
inter ference

%ALBUQUERQUE <

: High Performance Computing Center The University of New Mexico

¢ Disadvantages
[1 Difficult to map existing data structuresto thismemory
or ganization
[JUser responsible for sending and receiving data among
Processor s

[1 Tominimize overhead and latency, data should be
blocked up in large chunks and shipped before receiving
node needs it

%ALBUQUERQUE <

High Performance Computing Center The University of New Mexico

> M essage Passing
¢ The message passing model is defined as:
[] set of processes using only local memory

[] processes communicate by sending and r ecelving messages

[] data transfer requires cooper ative oper ationsto be
performed by each process (a send oper ation must have a
matching receive)

& Programming with message passing is done by linking
with and making calls to libraries which manage the
data exchange between processors. Message passing
libraries are available for most modern programming
languages.

%ALBUQUERQUE <

: High Performance Computing Center The University of New Mexico

¢ Fexible, it supports multiple programming schemes
Including:
[] Functional parallelism - different tasks done at the same time.

[1 Master-Slave parallelism - one process assigns subtask to
other processes.

[1SPMD parallelism - Single Program, Multiple Data - same
code replicated to each process

%ALBUQUERQUE <

. High Parformance Computing Center

» M essage Passing | mplementations

¢ MPI - Message Passing Interface
¢ PVM - Pardld Virtual Machine
¢ MPL - Message Passing Library

%ALBUQUERQUE <

¢ Message Passing I nterface- MPI

[] A standard portable message-passing library definition
developed in 1993 by a group of parallel computer vendors,
software writers, and application scientists.

[Available to both Fortran and C programs.

[] Available on awide variety of parallel machines.

[] Target platform is a distributed memory system such as the SP.

(] All inter-task communication is by message passing.

(1 All parallelism is explicit: the programmer is responsible for
parallelism the program and implementing the MPI constructs.

[] Programming model is SPMD

: High Performance Computing Center The University of New Mexico

%ALBUQUERQUE <

; High Performance Computing Center The University of New Mexico

MPI Standardization Effort

» MPI Forum initiated in April 1992: Workshop on Message
Passing Standar ds.
< Initially about 60 people from 40 organizations participated.

» Definesan interfacethat can beimplemented on many vendor's
platformswith no significant changesin the underlying communication
and systemsoftwar e.

« Allow for implementationsthat can be used in a heter ogeneous
environment.

« Semantics of the interface should be language independent.

¢ Currently, there are over 110 people from 50 organizations who have
contributed to this effort.

%ALBUQUERQUE <

; High Performance Computing Center The University of New Mexico

MPI-Standard Release

> May, 1994 M PI-Standard version 1.0

» June, 1995 M PI-Standard version 1.1*
¢ includes minor revisions of 1.0

» July, 1997 MPI-Standard version 1.2 and 2.0

¢ Wwith extended functions

[1 2.0 - support real time operations, spawning of processes, more
collective oper ations

[1 2.0 - explicit C++ and F90 bindings

» Complete postscript and HTML documentation can be found at:
http://www.mpi-forum.or g/docs/docs.html

* Currently availableat AHPCC

%ALBUQUERQUE <

; High Performance Computing Center The University of New Mexico

MPI Implementations

» Vendor | mplementations
¢ IBM-MP| *
¢ SGI*

> Public Domain I mplementations
¢ MPICH (ANL and MSU)*

¢ Other implementations have largely died off.
* Available at AHPCC.

%ALBUQUERQUE <

; High Performance Computing Center The University of New Mexico

L anguage Binding (version 1.1)

» Fortran 77
include ‘mpif.n’
call MPI _ABCDEF(Iist of argunents, |ERROR)
» Fortran 90 via Fortran 77 Library
¢ F90 strong type checking of arguments can cause difficulties

¢ cannot handle more than one object type
¢ include ‘mpif90.h’

» ANSI C
#include ‘mpi.h’
| ERROR=MPI _Abcdef (I 1 st of argunents)
» C++viaC Library
¢ viaextern “C” declaration, #include ‘ mpi++.h’

- NP

<«

|
High Performance Computing Center The University of New Mexico
Examples to Be Covered
Week 1 Week 2 Week 3
Point to Point Collective Advanced
Basic Collective | Communications Topics
MPI functional |MPI_SEND MPI_BCAST MPI_DATATYPE
. (MPI_ISEND) MPI_SCATTERV MPI_HVECTOR
routines MPI_RECV MPI_GATHERV MPI_VECTOR
(MPI_IRECV) MPI_REDUCE MPI_STRUCT
MPI_BCAST MPI_BARRIER MPI_CART CREATE
MPI_SCATTER
MPI_GATHER
MPI Examples | Helloworld P Poisson Equation
Swapmessage Matrix/vector Passing Structures/
Vector Sum multiplication common blocks
Matrix/matrix Parallel topologies

mulplication

in MPI

%ALBUQUERQUE <

: High Performance Computing Center The University of New Mexico

Program examples/MPI calls

» Hello - Basic MPI code with no communications.
¢ MPI_INIT - starts MPI communications
¢ MPI_COMM_RANK - get processor id
¢ MPI_COMM _SIZE - get number of processors
¢ MPI_FINALIZE - end MPI communications
» Swap - Basic M Pl point-to-point messages
¢ MPI_SEND - blocking send
¢ MPI_RECV - blocking receive
¢ MPI_IRECV, MPI_WAIT - non-blocking receive
> Vecsum - Basic collective communications calls
¢ MPI_SCATTER - distribute an array evenly among processors
¢ MPI_GATHER - collect pieces of an array from processors

%ALBUQUERQUE ST

|
_ High Performance Computing Center niversity of Now

Get MPI sample codes

» Download M Pl example codes from

& ~acpineda/public_html/mpi-sept2k/workshop 1

¢ http://www.ahpcc.unm.edu/~acpineda/mpi-sept2k/workshop 1
» Example codes

¢ hellof, hello.c

& swap.f, swap.c

& vecsum.f, vecsum.c

ALBUQUERQUE mn

|
Hmh Pﬂmm cm“putlﬂﬂ Cﬂ"tﬂr The University of New Mexico

A Basic MPI Program

program hel | oworl d
i ncl ude ' npif.h'<

i nteger comm rank, nunproc, ierror

o v N Terron o [s

call MPI _COVM RANK(MPI _COVM WORLD, rank, i error)

call MPI_COW SI ZE(MPI _COVM WORLD, nunproc, i error)

| —

ALBUQUERQUE T

|
High Performance Computing Center The University of New Mexico

A Basic MPI Program - cont’d

print *,"Hello World from Processor ",rank," of ", nunproc

L e

i f(rank.eq.0) then
print *,"Hello again from processor ", rank

call MPI _FI NALI ZE(i error) 4—-

end program hel | oworl d

%ALBUQUERQUE ST

—
: High Performance Computing Center The University of New Mexico

Compiling your code

> You invoke your compiler via scriptsthat tack on the
appropriate MPI include and library files:
& mpif77 -o <progname> <filename>.f
O mpif77 -c <filename>.f
(] mpif77 -o progname <filename>.o
¢ mpif90 -o <progname> <filename>.f90
¢ mpicc -0 <progname> <filename>.c
¢ mpiCC -o <progname> <filename>.cc
» The underlying compiler, NAG, PGI, etc. is determined by how
MPIHOME and PATH are set up in your environment.

%ALBUQUERQUE <

; High Parformance Computing Center

How to compile and run MPI on Blackbear
» MPICH

¢ Two choices of communications networks:
[1eth - FastEthernet (~100M b/sec)
[Igm - Myrinet (~1.2 Gb/sec)
¢ Many compilers
[(ONAG F95 - f95
[1PGI - pgf77, pgcc, pgCC, pgf90
L1GCC, G77

¢ Combination isdetermined by your
environment.

%ALBUQUERQUE <

; High Performance Computing Center The University of New Mexico

How to compile and run MPI on Blackbear

» MPICH - Two ways to setup your environment

(1 http://www.ahpcc.unm.edu/Systems/Documentation/BB-UG.html
[1setup_env.bb - appendsto your .cshrc
[1.rhosts file -lists nodes on bb
[Jcshrc_bb
[J bashrc_bb
[1Copy ACP’ s experimental version
[1 copy from ~acpineda
[.prefsARCH (ARCH=BB, AZUL, RCDE, etc.)
» set compiler/network optionsfor your platform here
[1.cshrc
[1.cshrc.ARCH

e

ALBUQUERQUE T

- |
High Pﬂl'fﬂ'rmﬂnl::ﬂ cumputlﬂg ':ﬂ“tﬂr niversity of New Mexi

PBS (Portable Batch Scheduler)

» To submit job use
& gsub file.pbs

[Ifile.pbsisa shell script that invokes mpirun
& qsub -I
[]Interactive session

» To check status
& gstat, gstat -an (see man gstat for details)

» To cancel job
¢ gdél job id

%ALBUQUERQUE ST

|

High Performance Computing Center The University of New Mexico

PBS command file (file.pbs)

» Just ashell script

#PBS -l nodes=4,walltime=12:00: 00 |

#/bin/csh

sour ce $HOM E/BLACKBEAR/cshr‘c_bb/ Myrinet

gmpiconf2 $PBS NODEFILE

- -| isalso an option to qsub

mpirun -np 8 -arch ch_gm -machinefile $PBS NODEFIL E <executable or

script>

gmpiconf - 1 process per node

gmpiconf2 - 2 processes per node

ALBUQUERQUE am

| !
Hmh Pmm C'ﬂlﬂputlﬂﬂ 'E'ﬂﬂtﬂl' The University of NewMexici;

Message Exchange

i f(nunproc > 1) then
if(rank == root) then

nmessage_sent="Hell o from processor 0

cal |l MPI _SEND(nessage_sent, 80, MPI CHARACTER, 1, 1, &

MPI _COVM WORLD, ierror) /v /' i

ALBUQUERQUE

High Performance Computing Center

Message Exchange - cont’d

<™
—

The University of New Mexico

Theroot processthen stopsat MPI_RECV until processor 1 sendsits message
back.

call MPI _RECV(nessage_received, 80, MPI_CHARACTER, 1, 1, &
MPI _COMM WORLD, status, ierror) _—"
else if (rank.eq.1l) then Sender Id M essage Tag
Processor 1 waits until processor 0 sends its nmessage

call MPI _RECV(nessage_received, 80, MPI_CHARACTER, 0, 1, &
MPI _COMM WORLD, status, ierror)

I It then constructs a reply.
nessage_sent='"Proc 1 got this nmessage: '//nessage_received
I And sends it....
call MPI _SEND(nessage_sent, 80, MPI_CHARACTER, 0, 1, &
MPI _COMM WORLD, i error)

endi f

print * "Processor ",rank," sent '",nessage_sent,"'"

print *, "Processor ",rank," received '",nessage_received,""'"
el se

print *, "Not enough processors to denp nessage passing”
endi f

%ALBUQUERQUE ST

|

Matching Sends to Recelves

» Message Envelope - consists of the sour ce, destination, tag, and
communicator values.

» A message can only bereceived if the specified envelope agrees
with the message envelope.

» The sour ce and tag portions can be wildcar ded using
MPI_ANY_SOURCE and MPI_ANY_ TAG. (Useful for writing
client-server applications.)

> Source=destination is allowed except for blocking operations.
> Variabletypes of the messages must match.

> In heter ogeneous systems, M Pl handles data conversions, e.g.
big-endian to little-endian.

» M essages (with the same envelope) are not overtaking.

: High Performance Computing Center The University of New Mexico

%ALBUQUERQUE <

High Performance Computing Center

Blocking vs. non-blocking callg/Buffering

* Non-blocking calls can be used to avoid “DEADLOCK”.
* Non-blocking calls can be used to overlap computation and communications.

buffer time buffer

000 |0™0-@
®-0=0| |@—-0=e
000 @O0
® -0 0 e

ALBUQUERQUE

High Performance Computing Center

Non-blocking call

<™
—

The University of New Mexico

i f(rank.eq.root) then

nmessage_sent="Hell o from processor 0

_COW WORLD, request, ierror)

call I\/PI _SEND(message_sent, 80, MPI_CHARACTER, 1, 1, &
_COVWM WORLD, |error)

call MPI_WAI T(request, status, ierror)

else if (rank.eq.1) then

call I\/PI IREC\/(nmessage_recei ved, 80, MPI _CHARACTER, 1,

1, &

%ALBUQUERQUE ST

_ High Performance Computing Center The Universi

Non-blocking call

» Canuse MPI_TEST in place of MPI_WAIT to periodically check
on a message rather than blocking and waiting.

» Client-server applicationscan uses MPI_WAITANY or
MPI TESTANY.

» Can peek ahead at messages with MPI_PROBE and
MPI IPROBE.

%ALBUQUERQUE <

. High Parformance Computing Center

Collective Communications

Broadcast the coefficients to all processors.

v

Scatter the vectors among N processors as
zpart, xpart, and ypart.
Calls can return as soon as their participation is compl ete.

ALBUQUERQUE amn

| !
Hmh Pmm C'ﬂ'l“pl-lﬂﬂﬂ 'E'ﬂﬂtﬂl' The University of NewMexic;

Vector Sum

call MPI _SCATTER(x, dinR2, Ml _REAL, xpart, dinm2, Ml _REAL, root, &
MPI _COVMM WORLD, ierr)

= =

call Ml _SCATTER(y, dinR, Ml _REAL, ypart, din2, MPI_REAL, root, &
MPI _COVMM WORLD, ierr)

ALBUQUERQUE

High Performance Computing Center

Vector Sum - cont’d

<™
—

The University of New Mexico

call MPlI _BCAST(coeff, 2, MPI _REAL, root, MPI_COWM WORLD, ierr)

doi =1, din
zpart (i) = coeff(1)*xpart(i) + coeff(2)*ypart(i)
enddo

call Ml _GATHER(zpart, din2, MPI_REAL, z, dinR2, Ml _REAL, root,
MPI _COWMM WORLD, ierr)

&

ALBUQUERQUE T

- |
High Performance Computing Center The University of New Mexico

References - MPI Tutorial

» PACSonlinecourse

< http://webct.ncsa.uiuc.edu:8900/
» CS471 - Andy Pineda

< http://www.arc.unm.edu/~acpineda/ CHA71I/HTML/CHA71.html
» MHPCC

< http://www.mhpcc.edu/trai ning/workshop/html/workshop.html
» Edinburgh Parallel Computing Center

< http://www.epcc.ed.ac.uk/epic/mpi/notes/mpi-course-epic.book_1.html
» Cornell Theory Center

< http://www.tc.cornell.edu/Edu/Tal ks/topic.html#mess
> Argonne

< http://www-unix.mcs.anl.gov/mpi/

