
MPI Workshop - IMPI Workshop - I
Introduction to Point-to-Point

and
Collective Communications

AHPCC Research Staff
Week 1 of 3

Table of ContentsTable of Contents
4 Introduction
4MPI Course Map
4Background
4MPI Routines/Exercises

! point-to-point communications
! blocking versus non-blocking calls
! collective communications

4How to run MPI routines at AHPCC (Blackbear)
4References

4Parallelism is done by:
! Breaking up the task into smaller tasks
! Assigning the smaller tasks to multiple workers to

work on simultaneously
! Coordinating the workers
! Not breaking up the task so small that it takes longer

to tell the worker what to do than it does to do it
✸ Buzzwords: latency, bandwidth

4All parallel computers use multiple processors
! There are several different methods used to classify

computers
! No single scheme fits all designs
! Flynn's scheme uses the relationship of program

instructions to program data.
✔ SISD - Single Instruction, Single Data Stream
✔ SIMD - Single Instruction, Multiple Data Stream
✔ MISD - Multiple Instruction, Single Data Stream (no

practical examples)
✔ MIMD - Multiple Instruction, Multiple Data Stream

✸ SPMD - Single program, Multiple Data Stream

• special case, typical MPI model

4Underlying model - MIMD/SPMD
! Parallelism achieved by connecting multiple

processors together
! Includes all forms of multiprocessor configurations
! Each processor executes its own instruction stream

independent of other processors on unique data stream
! Advantages

✔ Processors can execute multiple job streams
simultaneously

✔ Each processor can perform any operation regardless of
what other processors are doing

! Disadvantages
✔ Load balancing overhead - synchronization needed to

coordinate processors at end of parallel structure in a
single application

4MPI Memory Model - Distributed Memory
! Multiple processors operate independently but each has its own

private memory
! Data is shared across a communications network using message

passing
! User responsible for synchronization using message passing
! Advantages

✔ Memory scalable to number of processors. Increase number of
processors, size of memory and bandwidth increases.

✔ Each processor can rapidly access its own memory without
interference

! Disadvantages
✔ Difficult to map existing data structures to this memory

organization
✔ User responsible for sending and receiving data among

processors
✔ To minimize overhead and latency, data should be

blocked up in large chunks and shipped before receiving
node needs it

4Message Passing
! The message passing model is defined as:

✔ set of processes using only local memory
✔ processes communicate by sending and receiving messages
✔ data transfer requires cooperative operations to be

performed by each process (a send operation must have a
matching receive)

! Programming with message passing is done by linking
with and making calls to libraries which manage the
data exchange between processors. Message passing
libraries are available for most modern programming
languages.

! Flexible, it supports multiple programming schemes
including:

✔ Functional parallelism - different tasks done at the same time.

✔ Master-Slave parallelism - one process assigns subtask to
other processes.

✔ SPMD parallelism - Single Program, Multiple Data - same
code replicated to each process

4Message Passing Implementations
! MPI - Message Passing Interface
! PVM - Parallel Virtual Machine
! MPL - Message Passing Library

! Message Passing Interface - MPI
✔ A standard portable message-passing library definition

developed in 1993 by a group of parallel computer vendors,
software writers, and application scientists.

✔ Available to both Fortran and C programs.
✔ Available on a wide variety of parallel machines.
✔ Target platform is a distributed memory system such as the SP.
✔ All inter-task communication is by message passing.
✔ All parallelism is explicit: the programmer is responsible for

parallelism the program and implementing the MPI constructs.
✔ Programming model is SPMD

MPI Standardization EffortMPI Standardization Effort
4 MPI Forum initiated in April 1992: Workshop on Message

Passing Standards.
! Initially about 60 people from 40 organizations participated.

• Defines an interface that can be implemented on many vendor's
platforms with no significant changes in the underlying communication
and systemsoftware.

• Allow for implementations that can be used in a heterogeneous
environment.

• Semantics of the interface should be language independent.

! Currently, there are over 110 people from 50 organizations who have
contributed to this effort.

MPI-Standard ReleaseMPI-Standard Release
4 May, 1994 MPI-Standard version 1.0
4 June, 1995 MPI-Standard version 1.1*

! includes minor revisions of 1.0
4 July, 1997 MPI-Standard version 1.2 and 2.0

! with extended functions
✔ 2.0 - support real time operations, spawning of processes, more

collective operations
✔ 2.0 - explicit C++ and F90 bindings

4 Complete postscript and HTML documentation can be found at:
http://www.mpi-forum.org/docs/docs.html

* Currently available at AHPCC

MPI ImplementationsMPI Implementations
4Vendor Implementations

! IBM-MPI *
! SGI *

4Public Domain Implementations
! MPICH (ANL and MSU)*
! Other implementations have largely died off.
* Available at AHPCC.

Language Binding (version 1.1)Language Binding (version 1.1)
4 Fortran 77
 include ‘mpif.h’
 call MPI_ABCDEF(list of arguments, IERROR)
4 Fortran 90 via Fortran 77 Library

! F90 strong type checking of arguments can cause difficulties
! cannot handle more than one object type
! include ‘mpif90.h’

4 ANSI C
 #include ‘mpi.h’
 IERROR=MPI_Abcdef(list of arguments)

4 C++ via C Library
! via extern “C” declaration, #include ‘mpi++.h’

Examples to Be CoveredExamples to Be Covered
Week 1

Point to Point
Basic Collective

Week 2
Collective

Communications

Week 3
Advanced

Topics
MPI functional
routines

MPI_SEND
(MPI_ISEND)
MPI_RECV
(MPI_IRECV)
MPI_BCAST
MPI_SCATTER
MPI_GATHER

MPI_BCAST
MPI_SCATTERV
MPI_GATHERV
MPI_REDUCE
MPI_BARRIER

MPI_DATATYPE
MPI_HVECTOR
MPI_VECTOR
MPI_STRUCT
MPI_CART_CREATE

MPI Examples Helloworld
Swapmessage
Vector Sum

Pi
Matrix/vector
multiplication
Matrix/matrix
mulplication

Poisson Equation
Passing Structures/
common blocks
Parallel topologies
in MPI

Program examples/MPI callsProgram examples/MPI calls
4 Hello - Basic MPI code with no communications.

! MPI_INIT - starts MPI communications
! MPI_COMM_RANK - get processor id
! MPI_COMM_SIZE - get number of processors
! MPI_FINALIZE - end MPI communications

4 Swap - Basic MPI point-to-point messages
! MPI_SEND - blocking send
! MPI_RECV - blocking receive
! MPI_IRECV, MPI_WAIT - non-blocking receive

4 Vecsum - Basic collective communications calls
! MPI_SCATTER - distribute an array evenly among processors
! MPI_GATHER - collect pieces of an array from processors

Get MPI sample codesGet MPI sample codes
4Download MPI example codes from

! ~acpineda/public_html/mpi-sept2k/workshop_1
! http://www.ahpcc.unm.edu/~acpineda/mpi-sept2k/workshop_1

4Example codes
! hello.f, hello.c
! swap.f, swap.c
! vecsum.f, vecsum.c

A Basic MPI ProgramA Basic MPI Program
 program helloworld

 include 'mpif.h'
 integer comm, rank, numproc, ierror

 call MPI_INIT(ierror)

 call MPI_COMM_RANK(MPI_COMM_WORLD,rank,ierror)

 call MPI_COMM_SIZE(MPI_COMM_WORLD,numproc,ierror)

Include declarations of MPI
functions and constants.

Begin parallel execution of code.

Find out which process we are from the set of processes defined
by the communicator MPI_COMM_WORLD which is MPI’s
shorthand for all the processors running your program. This
value is stored in rank.

Returns the number of processes in numproc.

A Basic MPI Program - A Basic MPI Program - cont’dcont’d

print *,"Hello World from Processor ",rank," of ",numproc

 if(rank.eq.0) then
 print *,"Hello again from processor ", rank
 endif

 call MPI_FINALIZE(ierror)

 end program helloworld

This line is printed by all processes.

This line is printed only by the process of
rank equal to 0.

End parallel execution.

Compiling your codeCompiling your code
4 You invoke your compiler via scripts that tack on the

appropriate MPI include and library files:
! mpif77 -o <progname> <filename>.f

✔ mpif77 -c <filename>.f
✔ mpif77 -o progname <filename>.o

! mpif90 -o <progname> <filename>.f90
! mpicc -o <progname> <filename>.c
! mpiCC -o <progname> <filename>.cc

4 The underlying compiler, NAG, PGI, etc. is determined by how
MPIHOME and PATH are set up in your environment.

How to compile and run MPI on How to compile and run MPI on BlackbearBlackbear
4MPICH

!Two choices of communications networks:
✔ eth - FastEthernet (~100Mb/sec)
✔ gm - Myrinet (~1.2 Gb/sec)

!Many compilers
✔ NAG F95 - f95
✔ PGI - pgf77, pgcc, pgCC, pgf90
✔ GCC, G77

! Combination is determined by your
environment.

How to compile and run MPI on How to compile and run MPI on BlackbearBlackbear
4MPICH - Two ways to setup your environment

✔ http://www.ahpcc.unm.edu/Systems/Documentation/BB-UG.html
✸ setup_env.bb - appends to your .cshrc
✸ .rhosts file -lists nodes on bb
✸ cshrc_bb
✸ bashrc_bb

✔ Copy ACP’s experimental version
✸ copy from ~acpineda
✸ .prefs.ARCH (ARCH=BB, AZUL, RCDE, etc.)

• set compiler/network options for your platform here
✸ .cshrc
✸ .cshrc.ARCH

PBS (Portable Batch Scheduler)PBS (Portable Batch Scheduler)
4To submit job use

! qsub file.pbs
✔ file.pbs is a shell script that invokes mpirun

! qsub -I
✔ Interactive session

4To check status
! qstat, qstat -an (see man qstat for details)

4To cancel job
! qdel job_id

PBS command file (file.PBS command file (file.pbspbs))
4 Just a shell script
#PBS -l nodes=4,walltime=12:00:00
#!/bin/csh
…
source $HOME/BLACKBEAR/cshrc_bb
gmpiconf2 $PBS_NODEFILE
mpirun -np 8 -arch ch_gm -machinefile $PBS_NODEFILE <executable or

script>
…

-l is also an option to qsub

gmpiconf - 1 process per node

gmpiconf2 - 2 processes per node

Myrinet

Message ExchangeMessage Exchange
 if(numproc > 1) then

if(rank == root) then

 message_sent='Hello from processor 0'

 call MPI_SEND(message_sent, 80, MPI_CHARACTER, 1, 1, &
MPI_COMM_WORLD, ierror)

MPI_SEND is the standard blocking send operation. Depending upon whether the
implementers of the particular MPI library you are using buffer the message in a
global storage area, this call may or may not block until a matching receive has
been posted. Other flavors of send operations exist in MPI that allow you to force
buffering, etc.

Destination Message Tag
Messages are tracked by source
id/rank, destination id/rank,
message tag, and communicator.

Buffer containing
the data

The number
of elements in
the data buffer

The type of the data being
sent. In this case character.

Message Exchange - Message Exchange - cont’dcont’d

 call MPI_RECV(message_received, 80, MPI_CHARACTER, 1, 1, &
 MPI_COMM_WORLD, status, ierror)

 else if (rank.eq.1) then

 ! Processor 1 waits until processor 0 sends its message

 call MPI_RECV(message_received, 80, MPI_CHARACTER, 0, 1, &
 MPI_COMM_WORLD, status, ierror)

 ! It then constructs a reply.
 message_sent='Proc 1 got this message: '//message_received
 ! And sends it....
 call MPI_SEND(message_sent, 80, MPI_CHARACTER, 0, 1, &
 MPI_COMM_WORLD,ierror)
 endif
 print *,"Processor ",rank," sent '",message_sent,"'"
 print *,"Processor ",rank," received '",message_received,"'"
 else
 print *,"Not enough processors to demo message passing"
 endif

The root process then stops at MPI_RECV until processor 1 sends its message
back.

Sender Id Message Tag

Matching Sends to ReceivesMatching Sends to Receives
4 Message Envelope - consists of the source, destination, tag, and

communicator values.
4 A message can only be received if the specified envelope agrees

with the message envelope.
4 The source and tag portions can be wildcarded using

MPI_ANY_SOURCE and MPI_ANY_TAG. (Useful for writing
client-server applications.)

4 Source=destination is allowed except for blocking operations.
4 Variable types of the messages must match.
4 In heterogeneous systems, MPI handles data conversions, e.g.

big-endian to little-endian.
4 Messages (with the same envelope) are not overtaking.

Blocking Blocking vsvs. non-blocking calls/Buffering. non-blocking calls/Buffering

time
isend

P0 P1buffer

receive

data

data

data

data

data

• Non-blocking calls can be used to avoid “DEADLOCK”.
• Non-blocking calls can be used to overlap computation and communications.

send
P0 P1buffer

receive

data

data

data

data

data

okok

Non-blocking callNon-blocking call
 if(rank.eq.root) then

 message_sent='Hello from processor 0'

 call MPI_IRECV(message_received, 80, MPI_CHARACTER, 1, 1, &
 MPI_COMM_WORLD, request, ierror)

 call MPI_SEND(message_sent, 80, MPI_CHARACTER, 1, 1, &
 MPI_COMM_WORLD, ierror)

 call MPI_WAIT(request, status, ierror)

 else if (rank.eq.1) then

Begin the receive operation by letting the world know we are expecting
a message from process 1. We then return immediately.

Now send the message as before.

Now wait for the receive operation to complete.

Non-blocking callNon-blocking call
4 Can use MPI_TEST in place of MPI_WAIT to periodically check

on a message rather than blocking and waiting.
4 Client-server applications can use MPI_WAITANY or

MPI_TESTANY.
4 Can peek ahead at messages with MPI_PROBE and

MPI_IPROBE.

Collective CommunicationsCollective Communications

 Scatter the vectors among N processors as
 zpart, xpart, and ypart.
 Calls can return as soon as their participation is complete.

 Broadcast the coefficients to all processors.

ybxaz ~~~ +=

Vector SumVector Sum

 call MPI_SCATTER(x, dim2, MPI_REAL, xpart, dim2, MPI_REAL, root, &
 MPI_COMM_WORLD, ierr)

 call MPI_SCATTER(y, dim2, MPI_REAL, ypart, dim2, MPI_REAL, root, &
 MPI_COMM_WORLD, ierr)

MPI_SCATTER distributes blocks of array x from the root process to the array
xpart belonging to each process in MPI_COMM_WORLD. Likewise, blocks of
the array y are distributed to the array ypart .

Array x and the number
of elements of type real to
send to each process. Only
meaningful to root.

Array xpart and the
number of elements of
type real to receive.

Array y and the number of
elements of type real to send to
each process. Only meaningful
to root.

Array ypart and the
number of elements of
type real to receive.

Vector Sum - Vector Sum - cont’dcont’d

 call MPI_BCAST(coeff, 2, MPI_REAL, root, MPI_COMM_WORLD, ierr)

 do i = 1, dim2
 zpart(i) = coeff(1)*xpart(i) + coeff(2)*ypart(i)
 enddo

 call MPI_GATHER(zpart, dim2, MPI_REAL, z, dim2, MPI_REAL, root, &
 MPI_COMM_WORLD, ierr)

The coefficients, a and b, are stored in an array of length 2, coeff, that is
broadcast to all processes via MPI_BCAST from the process root.

Now each processor computes the vector sum on its portion of the
vector. The blocks of the vector sum are stored in zpart.

Now we use MPI_GATHER to collect the blocks back to the root process.

The array zpart to be gathered and
the number of elements each process
sends to root.

For the root process, the array z contains the
collected blocks from all processes on output.
MPI_GATHER needs to know how much data
to collect from each process.

References - MPI TutorialReferences - MPI Tutorial
4 PACS online course

! http://webct.ncsa.uiuc.edu:8900/
4 CS471 - Andy Pineda

! http://www.arc.unm.edu/~acpineda/CS471/HTML/CS471.html
4 MHPCC

! http://www.mhpcc.edu/training/workshop/html/workshop.html
4 Edinburgh Parallel Computing Center

! http://www.epcc.ed.ac.uk/epic/mpi/notes/mpi-course-epic.book_1.html
4 Cornell Theory Center

! http://www.tc.cornell.edu/Edu/Talks/topic.html#mess
4 Argonne

! http://www-unix.mcs.anl.gov/mpi/

